

PE | Fire Protection

Reference Handbook Version 1.2

This document is protected under U.S. and international copyright law. You may print this document for your personal use, but you may not distribute it electronically or in print or post it on the internet without the express written permission of NCEES. Contact permissions@ncees.org for more information.

Copyright ©2020 by NCEES®. All rights reserved.

All NCEES material is copyrighted under the laws of the United States. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior written permission of NCEES. Requests for permissions should be addressed in writing to permissions@ncees.org.

Third posting July 2022.

INTRODUCTION

About the Handbook

The Principles and Practice of Engineering (PE) Fire Protection exam is computer-based, and NCEES will supply all the resource material you can use during the exam. Reviewing the *PE Fire Protection Reference Handbook* before exam day will help you become familiar with the charts, formulas, tables, and other reference information provided. You will not be allowed to bring your personal copy of the *PE Fire Protection Reference Handbook* into the exam room. Instead, the computer-based exam will include a PDF version of the handbook for your use. No printed copies of the handbook will be allowed in the exam room.

The PDF version of the *PE Fire Protection Reference Handbook* that you use on exam day will be very similar to this one. However, pages not needed to solve exam questions—such as the cover and introductory material—may not be included in the exam version. In addition, NCEES will periodically revise and update the handbook, and each PE Fire Protection exam will be administered using the updated version.

The *PE Fire Protection Reference Handbook* does not contain all the information required to answer every question on the exam. Theories, conversions, formulas, and definitions that examinees are expected to know have not been included. The handbook is intended solely for use on the NCEES PE Fire Protection exam.

Other Supplied Exam Material

In addition to the PE Fire Protection Reference Handbook, the exam will include codes and standards for your use. A list of the material that will be included in your exam is shown on the <u>exam specifications</u>. Any additional material required for the solution of a particular exam question will be included in the question itself. You will not be allowed to bring personal copies of any material into the exam room.

Updates on Exam Content and Procedures

<u>NCEES.org</u> is our home on the web. Visit us there for updates on everything exam-related, including <u>specifications</u>, <u>exam-day policies</u>, <u>scoring</u>, and <u>practice tests</u>.

To familiarize yourself with the format, style, and navigation of a computer-based exam, visit the Exam Resources section on the NCEES <u>YouTube channel</u>.

Errata

To report errata in this book, log in to your <u>MyNCEES account</u> and send a message. Examinees are not penalized for any errors in the handbook that affect an exam question.

Contributors

The *PE Fire Protection Reference Handbook* was developed by members of the Society of Fire Protection Engineers and is maintained by NCEES.

CONTENTS

1	GEN	ERAL	1
	1.1	Units and Conversion Factors.	1
	1.2	Nomenclature	4
	1.3	General Formulas	4
	1.4	Engineering Economics	5
2	FIRE	E PROTECTION ANALYSIS	9
	2.1	General Fire Safety	9
	2.2	Risk Analysis 1	1
	2.3	Fire Protection Management	3
	2.4	Fire Protection Analysis—Information Sources	4
3	FIRE	E DYNAMICS FUNDAMENTALS 1	7
	3.1	Basics	7
	3.2	Fire Growth and Heat Release Rates	4
	3.3	Heat Transfer	7
	3.4	Plumes and Flames	5
	3.5	Flammable and Combustible Liquids Fires 4	1
	3.6	Compartment Fires	2
4	WAT	'ER-BASED EXTINGUISHING SYSTEMS 6	0
	4.1	Fluid Mechanics	0
	4.2	General Water Flow	4
	4.3	Fire Hydrants	6
	4.4	Fire Sprinkler Systems	7
	4.5	Hydraulic Calculations	8
	4.6	Water Hammer 7	5
	4.7	Pressures	6
	4.8	Fire Pumps	7
	4.9	Water-Mist Fire Suppression Systems 7	9
	4.10	Pipe Diameters	1
5	SPEC	CIAL HAZARD EXTINGUISHING SYSTEMS	2
	5.1	Foam Agents	2
	5.2	Low-Expansion Foam Systems	4
	5.3	High-Expansion Foam Systems	4
	5.4	Carbon Dioxide (CO ₂) Systems	5
	5.5	Clean Agents	4

6	FIRE	E ALARM AND DETECTION
	6.1	General Information
	6.2	Heat Detector RTI
	6.3	Rate of Heat Release
	6.4	Heat Detector Spacing
	6.5	Smoke Detector Response
	6.6	Audibility Design
	6.7	Illumination Design
	6.8	Voltage Drop Calculation
7	SMO	DKE CONTROL
	7.1	Fundamentals
	7.2	Smoke
	7.3	Airflow
8	HAZ	ARDOUS MATERIALS
	8.1	Flammability
	8.2	Vapor Clouds
	8.3	Explosions
	8.4	Explosion Venting
	8.5	Dusts
9	PASS	SIVE BUILDING SYSTEMS
	9.1	General
	9.2	Steel
	9.3	Concrete/Masonry
	9.4	Timber/Wood
	9.5	Tied Fire Walls
10	EGR	ESS AND OCCUPANT MOVEMENT
	10.1	General
	10.2	Evacuation Movement
	10.3	Egress Behavior in Smoke
	10.4	Emergency Lights
	10.5	Remoteness of Exits
11	PHY	SICAL PROPERTIES
	11.1	General
	11.2	Thermodynamics
	11.3	Physical and Combustion Properties of Selected Fuels

11.4	Heat of Combustion	. 185
11.5	Autoignition Temperatures for Liquids	. 200
11.6	Critical Heat Flux and Thermal Response Parameter of Materials	. 202
11.7	Thermal Properties and Thermal Response Properties of Polymers	. 207
11.8	Yields of Fire Products and Heats of Combustion for Well-Ventilated Fires ^a	. 210
11.9	Combustion Properties of Fuels	. 217
11.10	Flammability Limits of Premixed and Diffusion Flames	. 221
11.11	Limiting Oxygen Concentrations	. 228
11.12	Pool Burning: Thermochemical and Empirical Constants for a Number of Common Organic Fuels	. 229
11.13	Effective Opposed-Flow Flame Spread Properties.	. 230

1 **GENERAL**

1.1 Units and Conversion Factors

1.1.1 Area

Square feet: 1 $ft^2 = 0.092903 m^2$

1.1.2 Constants

Quantity		Symbol	Value	Units
gravity acceleration (standard)	metric	g	9.807	m/s ²
gravity acceleration (standard)	USCS	g	32.174	ft/sec ²

1.1.3 Flow

 $1 \text{ ft}^{3}/\text{sec} = 449 \text{ gpm}$

1.1.4 Pressure

1 ft of water = 1.13 in. of mercury

1 Pa (Pascal) = 1 N/m² = 1 J/m³ = 1 kg/m•s²

ft of water $\times 0.433 = lb/in^2$

 $lb/in^2 \times 2.307 = ft of water$

1.1.5 Sound

 $120 \text{ dB} = 20 \text{ Pa} = 1 \text{ W/m}^2$

1.1.6 Temperature

Fahrenheit °F = 1.8 (°C) + 32

Celsius

$$^{\circ}C = \frac{^{\circ}F - 32}{1.8}$$

Rankin

 $^{\circ}R = ^{\circ}F + 459.69$

Kelvin

K = °C + 273.15

1.1.7 Volume

 $1 \text{ ft}^3 = 7.4805 \text{ gal}$

Multiply	By	To Obtain	Multiply	By	To Obtain
acre	43 560	square feet (ft ²)	joule (J)	9.478×10^{-4}	Btu
ampere-hr (A-hr)	3 600	coulomb (C)	J	0.7376	ft-lbf
ångström (Å)	1×10^{-10}	meter (m)	J	1	newton•m (N•m)
atmosphere (atm)	76.0	cm. mercury (Hg)	J/s	1	watt (W)
atm. std	29.92	in., mercury (Hg)			
atm, std	14.70	lbf/in ² abs (psia)	kilogram (kg)	2.205	pound-mass (lbm)
atm, std	33.90	ft, water	kgf	9.8066	newton (N)
atm, std	1.013×10^{5}	pascal (Pa)	kilometer (km)	3,281	feet (ft)
		1	km/hr	0.621	mph
bar	$1 \times 10^{\circ}$	Pa	kilopascal (kPa)	0.145	lbf/in ² (psi)
bar	0.987	atm	kilowatt (kW)	1.341	horsepower (hp)
barrels-oil	42	gallonsoil	kW	3,413	Btu/hr
Btu	1,055	joule (J)	kW	737.6	(ft-lbf)/sec
Btu	2.928×10^{-4}	kilowatt-hr (kWh)	kW-hour (kWh)	3,413	Btu
Btu	778	ft-lbf	kWh	1.341	hp-hr
Btu/hr	3.930×10^{-4}	horsepower (hp)	kWh	3.6×10^{6}	joule (J)
Btu/hr	0.293	watt (W)	kip (K)	1,000	lbf
Btu/hr	0.216	ft-lbf/sec	K	4,448	newton (N)
calorie (g-cal)	$3.968 imes 10^{-3}$	Btu	liter (L)	61.02	in ³
cal	1.560×10^{-6}	hp-hr	L	0.264	gal (U.S. Liq)
cal	4.184	joule (J)	L	10^{-3}	m ³
cal/sec	4.184	watt (W)	L/second (L/s)	2.119	ft ³ /min (cfm)
centimeter (cm)	3.281×10^{-2}	foot (ft)	L/s	15.85	gal (U.S.)/min (gpm)
cm	0.394	inch (in)			
centipoise (cP)	0.001	pascal•sec (Pa•s)	meter (m)	3.281	feet (ft)
centipoise (cP)	1	g/(m•s)	m	1.094	yard
centipoise (cP)	2.419	lbm/hr-ft	m/second (m/s)	196.8	feet/min (ft/min)
centistoke (cSt)	1×10^{-6}	$m^2/sec (m^2/s)$	mile (statute)	5,280	feet (ff)
cubic feet/second (cfs)	0.646317	million gallons/day (MGD)	mile (statute)	1.609	kilometer (km)
cubic foot (ft ³)	7.481	gallon	mile/nour (mph)	88.0	It/min (Ipm)
cubic meters (m ³)	1,000	liters	mpn	1.009 1.216 × 10 ⁻³	km/n
electronvolt (eV)	1.602×10^{-19}	joule (J)	mm of H_2O	9.678×10^{-5}	atm
foot (ft)	30.48	cm	newton (N)	0.225	lbf
1001 (11)	0 30/8	meter (m)	newton (N)	1	kgem/s ²
ft of H O	0.4332	nsi	N•m	0.7376	ft-lbf
ft-pound (ft-lbf)	1.285×10^{-3}	Btu	N•m	1	ioule (J)
ft-lbf	3.766×10^{-7}	kilowatt-hr (kWh)			J (-)
ft-lbf	0.324	calorie (g-cal)	pascal (Pa)	9.869×10^{-6}	atmosphere (atm)
ft-lbf	1.356	ioule (J)	Pa	1	newton/m ² (N/m ²)
ft-lbf/sec	1.818×10^{-3}	horsepower (hp)	Pa•sec (Pa•s)	10	poise (P)
		1 (1)	pound (lbm, avdp)	0.454	kilogram (kg)
gallon (U.S. Liq)	3.785	liter (L)	lbf	4.448	Ν
gallon (U.S. Liq)	0.134	ft ³	lbf-ft	1.356	N∙m
gallons of water	8.3453	pounds of water	lbf/in ² (psi)	0.068	atm
gamma (γ, Γ)	1×10^{-9}	tesla (T)	psi	2.307	ft of H ₂ O
gauss	1×10^{-4}	Т	psi	2.036	in. of Hg
gram (g)	2.205×10^{-3}	pound (lbm)	psi	6,895	Pa
hectare	1×10^4	square meters (m ²)	radian (rad)	180/π	degree
hectare	2.47104	acres			
horsepower (hp)	42.4	Btu/min	slug	32.174	pound-mass (lbm)
hp	745.7	watt (W)	stokes	1×10^{-4}	m ² /s
hp	33,000	(ft-lbf)/min			
hp	550	(ft-lbf)/sec	tesla	1.0	weber/m ²
hp-hr	2,545	Btu	therm	1×10^{5}	Btu
hp-hr	1.98×10^{6}	ft-lbf	ton (metric)	1,000	kilogram (kg)
hp-hr	$2.68 imes 10^6$	joule (J)	ton (short)	2,000	pound-force (lbf)
hp-hr	0.746	kWh	watt (W)	3 413	Btu/br
inch (in)	2 540	continuator (cm)	W	$1.341 \sim 10^{-3}$	horsenower (hp)
in of Hg	2.340	atm	W	1.341 × 10	ioule/s (I/s)
in of Hg	13.60	in of H O	weber/m ² (Wh/m ²)	10.000	gallss
in of H.O	0.0361	lbf/in^2 (psi)		10,000	5
in of H Ω	0.002458	atm			
	0.002700	44111			

1.2 Nomenclature

The following is general nomenclature used throughout this handbook. Additional variables are defined within specific sections.

Symbol	Quantity	Units (U.S.)	Units (SI)
а	area	in ² or ft ²	mm ² or m ²
а	acceleration	ft/sec ²	m/s ²
bhp	brake horsepower	hp	W (Watt)
С	Hazen-Williams pipe roughness coefficient	dimensionl	ess
d	diameter	in. or ft	mm
3	pipe roughness factor	ft	m
f	Darcy friction factor	dimensionl	ess
F	force	$lb_{f} = \frac{slug-ft}{sec^{2}} = \frac{\left(\frac{lb_{m}}{g}\right)-ft}{sec^{2}}$	N (Newtons)
g	acceleration due to gravity	ft/sec ²	m/s ²
h	fluid height	ft	m
Н	total head	ft	m
L	length of pipe	ft	m
т	mass	lb _m	kg
'n	mass flow rate	lb _m /sec	kg/s
п	rotational speed (pumps)	rpm	rpm
Re	Reynolds number	dimensionl	ess
р	pressure	psi or lb _f /in ²	N/m ² or Pascal
Р	power	ft-lb/sec	W
Q	volumetric flow rate	gpm	liter/s
ρ	density	lb/ft ³	g/cm ³
t	time	sec or min	S
v	velocity	ft/sec	m/s
υ	kinematic viscosity	ft ² /sec	cm ² /s (stoke)
V	volume	in ³ or ft ³	liters
w	weight (force)	lb _f	N (or kg _f)
Ζ	vertical distance	ft	m

1.3 General Formulas

Volume of a pipe:

$$V = 0.25\pi d^2 L$$

Area of a circle/pipe:

$$A = \frac{\pi}{4}d^2$$

Vapor density:

```
Vapor density = \frac{\text{molecular weight}}{29}
```

Heat:

Total heat = weight $\times H_c$

where

 $H_{\rm c}$ = heat of combustion (J/kg)

Total heat in J

Weight (kg)

1.4 Engineering Economics

1.4.1 General

Factor Name	Converts	Symbol	Formula
Single Payment, Compound Amount	to F given P	(F/P, i%, n)	$(1 + i)^n$
Single Payment, Present Worth	to P given F	(P/F, i%, n)	$(1+i)^{-n}$
Uniform Series, Sinking Fund	to A given F	(A/F, i%, n)	$\frac{i}{\left(1+i\right)^n-1}$
Capital Recovery	to A given P	(A/P, i%, n)	$\frac{i(1+i)^n}{(1+i)^n - 1}$
Uniform Series, Compound Amount	to F given A	(F/A, i%, n)	$\frac{(1+i)^n-1}{i}$
Uniform Series, Present Worth	to P given A	(P/A, i%, n)	$\frac{\left(1+i\right)^n - 1}{i\left(1+i\right)^n}$
Uniform Gradient, Present Worth	to P given G	(P/G, i%, n)	$\frac{(1+i)^n - 1}{i^2 (1+i)^n} - \frac{n}{i(1+i)^n}$
Uniform Gradient †, Future Worth	to F given G	(F/G, i%, n)	$\frac{(1+i)^n-1}{i^2}-\frac{n}{i}$
Uniform Gradient, Uniform Series	to A given G	(A/G, i%, n)	$\frac{1}{i} - \frac{n}{\left(1+i\right)^n - 1}$

Nomenclature and Definitions:

- A = Uniform amount per interest period
- B = Benefit
- BV = Book value
- C = Cost
- d = Inflation-adjusted interest rate per interest period

 D_i = Depreciation in year *j*

EV = Expected value

- F = Future worth, value, or amount
- f = General inflation rate per interest period
- G = Uniform gradient amount per interest period
- i = Interest rate per interest period
- $i_{\rm e}$ = Annual effective interest rate

MARR = Minimum acceptable/attractive rate of return

- m = Number of compounding periods per year
- n = Number of compounding periods; or the expected life of an asset
- P = Present worth, value, or amount
- r = Nominal annual interest rate
- S_n = Expected salvage value in year *n*

Subscripts:

$$j = \text{at time } j$$

n = at time n

$$\dagger = \frac{F}{G} = \frac{\left(\frac{F}{A}\right) - n}{i} = \frac{F}{A} \times \frac{A}{G}$$

1.4.2 Time Value of Money

$$P\left[\frac{1 - \left(1 + \frac{I}{100}\right)^{-N}}{\frac{I}{100}}\right] + F_{v}\left(1 + \frac{I}{100}\right)^{-N} + P_{v} = 0$$

where

P = payment

 $F_{\rm v}$ = future value

 $P_{\rm v}$ = present value

I = interest rate (%)

Note: This will yield negative numbers for at least one result due to that number being a value that is paid.

1.4.3 Non-Annual Compounding

$$i_{\rm c} = \left(1 + \frac{r}{m}\right)^{\rm m} - 1$$

1.4.4 Breakeven Analysis

By altering the value of any one of the variables in a situation, while holding all the other values constant, it is possible to find a value for that variable that makes the two alternatives equally economical. This value is the breakeven point. The payback period is the period of time required for the profit or other benefits of an investment to equal the cost of the investment.

1.4.5 Inflation

To account for inflation, the dollars are deflated by the general inflation rate per interest period f, and then they are shifted over the time scale using the interest rate per interest period i. Use an inflation-adjusted interest rate per interest period d for computing present worth values P.

 $d = i + f + (i \times f)$

1.4.6 Depreciation

$$D_j = \frac{C - S_n}{n}$$

1.4.7 Book Value

 $BV = initial \cos t - \sum D_i$

1.4.8 Capitalized Costs

Capitalized costs are present worth values using an assumed perpetual period of time.

$$P = \frac{A}{i}$$

1.4.9 Benefit-Cost Analysis

In a benefit-cost analysis, the benefits B of a project should exceed the estimated costs C.

$$B - C \ge 0$$
 or $\frac{B}{C} \ge 1$

1.4.10 Modified Accelerated Cost Recovery System (MACRS)

$D_j = (\text{factor}) C$

MACRS FACTORS						
	Recovery Period (Years)					
Year	3	5	7	10		
		Recovery Rat	e (Percent)			
1	33.33	20.00	14.29	10.00		
2	44.45	32.00	24.49	18.00		
3	14.81	19.20	17.49	14.40		
4	7.41	11.52	12.49	11.52		
5		11.52	8.93	9.22		
6		5.76	8.92	7.37		
7			8.93	6.55		
8			4.46	6.55		
9				6.56		
10				6.55		
11				3.28		

2 FIRE PROTECTION ANALYSIS

2.1 General Fire Safety

2.1.1 Material Compatibility

Material compatibility is of importance for proper functionality of all systems and equipment. Information on oxidizing chemicals, combustible chemicals, unstable chemicals, water- and air-reactive chemicals, and corrosive chemicals is available in many sources including installation standards.

2.1.2 Acceptable Thresholds

2.1.2.1 Maximum Temperature

Maximum temperatures affect operability of machinery, ignition of flammable vapors or gases (autoignition), and degradation of materials including structural elements.

Temperature thresholds for ignition prevention:

- Autoignition temperature The minimum temperature required to initiate self-sustained combustion in a substance without any apparent source of ignition.
- Flash-point temperature The minimum temperature at which the liquid gives off sufficient vapor to form an ignitable mixture with air near the surface of the liquid or within the test vessel used. There are two methods of testing flash point: closed-cup and open-cup.
 - Closed-cup testing involves conditions similar to those in a closed tank. Most flash-point temperatures are given for closed-cup.
 - Open-cup testing is representative of open systems such as open tanks. This value will be indicated with a symbol of *oc*.
 - Generally, there is a difference of 10–20°F between closed-cup and open-cup flash-point temperatures.
 - At flash-point temperatures an ignitable mixture will form but the mixture will not ignite automatically. It is capable of being ignited in the presence of an ignition source.
- Fire point The lowest temperature of a liquid in an open container at which the vapors evolve fast enough to support continuous combustion. The fire point is not the same as the autoignition temperature. An external ignition source must be present.
- Diluted water-miscible flammable liquids might have a flash point but no fire point. This is a consideration when evaluating protection of storage of heavily diluted water-miscible flammable liquids.

2.1.3 Electrical Fires

2.1.3.1 Ignition Modes Involving Electric Current

Electric sparking or arcing can ignite materials in all phases: gases, liquids, solids, liquid aerosols, and dust clouds. Ignition in gaseous and dust cloud media has been studied extensively. Ignition in bulk liquids is rare, apart from oil-filled transformers and other HV devices. Ignition of liquid sprays, fogs, or aerosols is problematic in some industries, however. Ignition of solids from arcing or sparking is common.

Common Gases and Vapors				
Substance	MIE (mJ)			
Acetone	2.15			
Acetylene	0.03			
Ammonia	680			
Benzene	0.91			
Butane	0.26			
Carbon disulfide	0.039			
Cyclohexane	2.65			
Ethane	0.42			
Ethylene	0.114			
Ethylene oxide	0.105			
Furan	0.328			
Heptane	1.15			
Hexane	0.29			
Hydrogen	0.03			
Hydrogen sulfide	0.077			
Iso-octane	2.9			
Methane	0.71			
Methanol	0.3			
Pentane	0.82			
Propane	0.5			
Propylene	0.418			
Toluene	2.5			
Vinyl acetylene	0.095			
p-Xylene	0.2			

Minimum Ignition Energy (MIE) of Some

Dust Clouds					
Substance	MIE (mJ)				
Aluminum	50				
Aspirin	25–30				
Black powder	320				
Coal	250				
Сосоа	100–180				
Coffee	160				
Cornstarch	30–60				
Cotton linters	1,920				
Dextrin	40				
Flour, cake	25-80				
Grain dust	30				
Magnesium	40				
Manganese	305				
Nitrostarch	40				
Nylon	20–30				
Paper dust	20-60				
Phenol formaldehyde	10–6,000				
Polyethylene	70				
Polyethylene terephthalate	35				
Polystyrene	40–120				
Rice	40–120				
Silicon	100				
Soap powder	60–120				
Sugar, powdered	30				
Tantalum	120				
Tin	80				
Titanium	25				
TNT	75				
Urea formaldehyde	80–1,280				
Wheat starch	25-60				
Wood flour	30-40				
Zinc	960				

Minimum Ignition Energy (MIE) for Various

From Ignition Handbook, used by permission. Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

From Ignition Handbook, used by permission.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Apart from metals and some other rare substances, no combustible solids have an ignition temperature over 1,000°C. The temperature of an electric arc is at least 6,500 K and may be much higher. Yet an electric arc impinging onto a combustible solid is not necessarily assured of igniting it. Two primary factors operate in such cases:

- 1. The arc impingement may be very brief; many combustible materials can resist enormous heat fluxes if these are sustained only briefly.
- 2. The material may ablate too rapidly to allow ignition. These mechanisms, however, are understood only qualitatively.

2.2 Risk Analysis

Risk analysis estimates the probability of fire occurring and evaluates its consequences by weighting both fire severity and probability. The results of a risk analysis can be used to estimate the average expected loss and its consequences, the largest possible loss and its consequences, or other parameters. Risk analysis takes fault analysis methodology, extreme value theory, and reliability theory into account in analyzing fire risk of fire safety.

Many methods or techniques may be used to evaluate risk. Examples include failure mode and effects analysis (FMEA), event tree analysis (ETA), hazard and operability analysis (HAZOP), fault tree analysis, criticality analysis, and consequence analysis.

2.2.1 Reliability Analysis

Reliability, represented by the letter R, is the probability of an item functioning after a predefined time, T. This definition introduces the concept of probability in reliability analysis. As such, the time to failure of a system or component is considered a random variable characterized by a probability distribution. The reliability of the system is the area under the probability distribution to the right of time T. Consequently, the unreliability of a system or component, represented by the letter F, is simply F = 1 - R. The unreliability will be the area under the curve to the left of time T. The following figure illustrates this concept. The curve in the figure represents the probability distribution characterizing the time to failure:

Conceptual Representation for the Definition of Reliability and Unreliability

Source: SFPE *Handbook of Fire Protection Engineering*, fifth edition, with permission from SFPE.

The process of conducting a reliability, availability, or maintainability analysis consists of the following general steps:

- 1. Definition of system boundaries
- 2. Failure mode analysis
- 3. Collection of reliability data
- 4. Selection of appropriate modeling method or technique
- 5. Quantification
- 6. Documentation

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

2.2.2 Event Tree Analysis

An event tree is a diagram consisting of the sequence of possible states of a system and of corresponding events that lead to those states. By assigning probabilities to the outcomes of the intermediate events, the cumulative probability of consequences can be calculated.

Event tree analysis (ETA) is often used to analyze complex situations with several possible scenarios, where several fire or life safety systems are in place or are being considered. In brief, event trees are developed for a scenario, and probabilities and frequencies for components are applied (see previous discussion on ETA).

One method for quantifying fire risk from multiple fire scenarios is given as

$$\sum Risk_i = \sum (Loss_i \times F_i)$$

where

 $Risk_i = risk$ associated with scenario *i*

 $Loss_i = loss$ associated with scenario *i*

 F_i = frequency of scenario *i* occurring

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

2.2.3 Criticality Analysis

Criticality analysis estimates the effect of fire prevention measures by assigning probabilities and severities to different possible fire scenarios. This approach is also known as operational risk management.

2.2.4 Building Fire Risk Analysis

Building fire risk analysis is one specific application of risk analysis. In fire safety analysis, the level of building fire safety is complementary to the level of fire risk. The chance of not having a fire is 1 minus the chance of having a fire (risk). Building fire safety analysis may also involve cost-benefit analysis.

To reduce overall risk in an industrial facility, a planned hazardous materials storage area is recommended and sometimes required, depending on the hazardous materials being stored. The location, construction, and level of protection required depend on the level of hazard the stored materials pose. The best option is to have a detached low-value structure that would reduce the risk to the public, nearby structures, or occupants of those nearby structures at risk. If this is not achievable, the next best option is a structure attached to the facility that has no penetrations into the facility that would allow transfer of products of combustion or a material spill from the structure to the facility.

Building fire risk analysis should consider

- 1. What the fire hazards are and how fires might occur
- 2. How the unwanted outcomes (consequences) are valued and by whom (including offsetting benefits)
- 3. What differences in risk perception and valuation exist and how they should be treated (i.e., should high-consequence events be disregarded if the probability of occurrence is very low?)
- 4. Whether any social or cultural issues may be relevant
- 5. Any different stakeholder views on the likelihood of fire occurrence and of the resulting consequences
- 6. Whether uncertainty, variability, and unknowns have been identified and appropriately addressed Source: SFPE *Handbook of Fire Protection Engineering*, fifth edition, with permission from SFPE.

2.2.5 Limits of Analysis

The limitations of developed models or equations should always be verified and examined when applying them to specific problems.

The factors affecting the reliability of predictions provided by models or equations may be categorized as follows:

- Definition and conceptualization of the assessed problem or scenario
- Formulation of the conceptual model
- Formulation of the computational model
- Estimation of the parameter values
- Data on which the models or equations are based

2.2.6 Percent Error Formula

Percentage yield = $\frac{Actual yield}{Theoretical yield} \times 100\%$

2.3 Fire Protection Management

A comprehensive fire protection management program is critical to ensuring the health, safety, and welfare of a building's occupants. To sustain a desired level of life safety, the building components and systems must be managed. In addition, activities occurring within the building must be managed to remain within design limitations.

This topic also includes fire prevention measures such as hot work (welding) permits, housekeeping, security service, maintenance of warehouse aisles and flue spaces, and maintenance of performance-based design parameters.

Three factors are important in managing an adequate level of life safety in an existing facility:

- Capabilities and limitation of design
- · Facility system impairments procedures
- · Inspection, testing, and maintenance frequencies

The type, quantity, and arrangement of fuel present within a building can significantly affect the magnitude of a fire event. The building design or a prescriptive code requirement may contemplate a specified maximum fuel loading associated with a specific occupancy so that the fire protection systems can perform reliably and efficiently. Elements that can have an impact on this design include

- Size and type of fuel packages
- · Maximum quantity of fuel packages within the specified area
- Allowable locations for storage of display of specified fuel packages
- Required spatial separation between fuel packages

2.3.1 Fire Protection System Reliability Prediction

Method to predict the required maintenance interval for a fire protection system that is based on the system's reliability:

$$t_{\rm R} = \frac{\ln R_{\rm R}}{-\Lambda}$$

where

 $\ln R_{\rm R}$ = Napierian log of the required reliability, $R_{\rm R}$

- Λ = inherent failure rate of the system
- $t_{\rm R}$ = required maintenance interval to achieve the required reliability

2.3.2 Reliability of Fire Protection System

 $\Lambda_T = 1 - P_T$

where

 Λ_T = failure rate of the total system

 P_T = probability of successful operation for the system, or reliability

The failure rate, Λ , of a system assembled from components having exponential failure rates is computed from the sum of the failure rates of each of the components, Λ_n , from

$$\Lambda = q_1 \lambda_1 + q_2 \lambda_2 + q_3 \lambda_3 + \dots + q_n \lambda_n$$

where

 Λ = failure rate of the total system

 q_n = quantity of the *n*th component in the system

 λ_n = failure rate of the *n*th component in the system

2.4 Fire Protection Analysis—Information Sources

Fire prevention can be defined as the design and monitoring of physical conditions, automated processes, and human activities to minimize the chance of fire. The chance of fire is minimized by controlling fuel, oxidizers, and ignition energy; by taking process fire safety and hazard abatement measures; and by implementing management programs for loss prevention and control. Fire prevention is found in every phase of a facility, from preliminary design through demolition.

2.4.1 Data Interpretation

- Identify and assess the impact of changes (e.g., facility, occupant, content, process/activity)
- Analyze system test results (e.g., fire pump, sprinkler, fire alarm)
- Analyze fire test results

A number of types of fire tests can be analyzed:

- Flame spread over building materials (internal and external)
- Smoke production rates
- Ignitability and flammability of clothing, furniture, drapery, and other similar materials
- Flash point, fire point, and similar tests of liquid flammability
- Warehouse commodity classification
- Dust explosivity and ignitability
- · Required extinguishing agent concentrations or densities for specific scenarios
- · Susceptibility of liquid to static charge accumulation

2.4.2 Fire Test Methods

Fire tests of entire building component, such as doors or compartments, are known as full-scale tests. Bench tests are smaller-scale tests of representative sample of materials. Fire tests can be grouped into these categories:

- Empirically based bench tests
- Full-scale and component tests
- Research-oriented bench tests

2.4.2.1 Liquid Flammability Tests

The test used to determine the flash points of most liquids is ASTM D56 "Flash Point by Tag Closed Cup Tester." This test is intended for liquids with a flash point of less than 175°F. Flash points determined in an open-cup test can be as much as 50°F higher than when determined using a closed-cup test. The Pensky-Martens test is intended for fuel oils with flash points between 150°F and 230°F.

Corrected flash point = T - 0.033 (760 - P)

where

T = measured closed-cup flash point (°C)

P = ambient atmospheric (barometric)pressure (mm Hg)

	Closed-Cup FP (°C)	Open-Cup FP (°C)	Fire Point (°C)
<i>n</i> -Hexane	-22	a	NA
<i>n</i> -Heptane	_4	-1	2
Methanol ^b	12	1.0, 13.5 ^b	1.0, 13.5 ^b
<i>n</i> -Octane	12	17	18
Ethanol ^b	13	6, 18.0 ^b	6, 18.0 ^b
s-Butanol	24	NA	29
<i>m</i> -Xylene	25	NA	44
<i>p</i> -Xylene	25	31	44
<i>n</i> -Butanol	29	36	36, 38, 50
<i>n</i> -Nonane	31	37	42
o-Xylene	32	36	42
JP-6	NA	38	43
<i>n</i> -Decane	44	52	61.5, 66
Decalin	NA	57	63
Tetraline	NA	71	74
Bicyclohexyl	NA	74	79
<i>n</i> -Dodecane	74	NA	103
Fuel oil no. 2	124	NA	129
Fuel oil no. 6	146	NA	177
Glycero	160	176	207
Motor oil	216	NA	224

Some Values of Closed-Cup Flash Point, Open-Cup Flash Point, and Fire Point Temperatures

NA = Not available

^a The open-cup flash point of *n*-hexane is quoted as –26°C in the original *Factory Mutual Handbook* and repeated in Babrauskas. This is incorrect.

^b Data from Glassman and Dryer. The lower values were obtained with ignition by a pilot flame. The upper values refer to spark ignition.

Unless otherwise stated, these data come from the Factory Mutual Handbook, as quoted by Babrauskas.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

2.4.2.2 Smoke and Toxic Gas Release

The type of fuel, mode of burning (flaming/smoldering), heat flux, and ventilation factors have a major effect on smoke development and toxic gas production. Knowledge of smoke development properties is important because smoke inhibits visibility and exposes occupants to toxic gases.

Tests for smoke production include

ASTM E662: "Specific Optical Density of Smoke Generated by Solid Materials"

ASTM D2843: "Density of Smoke from the Burning or Decomposition of Plastics"

ASTM E906: "Heat and Visible Smoke Release Rates for Materials and Products Using a Thermopile Method"

ASTM E1354: "Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter"

2.4.3 ASTM E119 (NFPA 251) Furnace Test Correction Factor

$$C = \frac{2I(A - A_{\rm S})}{3(A_{\rm S} + L)}$$

where

- C = correction factor (min or hr)
- I = indicated fire resistance period (min or hr)
- A = area under the curve of indicated average furnace temperature for the first three-fourths of the indicated period (°F-hr, °C-hr, °F-min, °C-min)
- $A_{\rm S}$ = area under the standard furnace curve for the same part of the indicated period (°F-hr, °C-hr, °F-min, °C-min)
- L = lag correction (54°F-hr or 3,240°F-min, 30°C-hr or 1,800°C-min)

3 FIRE DYNAMICS FUNDAMENTALS

3.1 Basics

3.1.1 Combustion

Combustion can be expressed chemically, one example being the balanced chemical equation for the combustion of methane, which is

 $CH_4 + 2O_2 = CO_2 + 2H_2O$ (1 mol of methane reacting with 2 mol of oxygen produces 1 mol of carbon dioxide and 2 mol of water)

Heat of reaction = Heat of formation of products – Heat of formation of reactants

Compound	$(\Delta H_{\rm f})$ 298 (kJ/mol)
Hydrogen (atomic)	+218.00
Oxygen (atomic)	+249.17
Hydroxyl (OH)	+38.99
Chlorine (atomic)	+121.29
Carbon monoxide	-110.53
Carbon dioxide	-393.52
Water (liquid)	-285.8
Water (vapor)	-241.83
Hydrogen chloride	-92.31
Hydrogen cyanide (gas)	+135.14
Nitric oxide	+90.29
Nitrogen dioxide	+33.85
Ammonia	-45.90
Methane	-74.87
Ethane	-84.5
Ethene	+52.6

Heats of Formation at 25°C (298 K)

⁽continued on next page)

Compound	$(\Delta H_{\rm f})$ 298 (kJ/mol)
Ethyne (acetylene)	+226.9
Propane	-103.6
<i>n</i> -Butane	-124.3
isobutane*	-131.2
Methanol	-242.1

* Heats of formation of other hydrocarbons are tabulated in Weast.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Complete combustion for a generic hydrocarbon $(C_x H_y)$ burning in air is written as

$$C_x H_y + a(O_2 + 3.76N_2) \rightarrow xCO_2 + \frac{y}{2}H_2O + 3.76aN_2$$

where

$$a = x + \frac{y}{4}$$

$$s = \left(\frac{moles \ air}{moles \ fuel}\right)_{\text{stoich}} = \frac{\left(x + \frac{y}{4}\right)}{X_{O_2}}$$

s = molar stoichiometric ratio (both above X_{O_2})

$$X_{O_2}$$
 = mole fraction of oxygen in air $\left(\frac{1}{4.76}\right)$

B-Number Values for Different Fuels

Solids	Formula	B-number	Liquid
Polypropylene	C ₃ H ₆	1.29	Methanol
Polyethylene	C_2H_4	1.16	Ethanol
Polystyrene	C ₈ H ₈	1.55	Propanol
Nylon 6/6	C ₁₂ H ₂₂ N ₂ O ₂	1.27	Butanol
Polycarbonate	C ₆ H ₁₄ O ₃	1.41	<i>n</i> -Pentane
PMMA	C ₅ H ₈ O ₂	1.78	<i>n</i> -Hexane
PVC	C ₂ H ₃ Cl	1.15	<i>n</i> -Heptane
Fir wood	C _{4.8} H ₈ O ₄	1.75	<i>n</i> -Octane (gaso)
α-cellulose	C ₆ H ₁₀ O ₅	6.96	iso-Octane
Polyoxymethylene	CH ₂ O	1.47	<i>n</i> -Nonane
			-

Liquids	Formula	B-number
Methanol	CH ₃ OH	2.53
Ethanol	C ₂ H ₅ OH	2.89
Propanol	C ₃ H ₇ OH	3.29
Butanol	C ₄ H ₈ OH	3.35
<i>n</i> -Pentane	C ₅ H ₁₂	7.63
<i>n</i> -Hexane	C ₆ H ₁₄	6.67
<i>n</i> -Heptane	C ₇ H ₁₆	5.92
<i>n</i> -Octane (gasoline)	C_8H_{18}	5.42
iso-Octane	C ₈ H ₁₈	6.59
<i>n</i> -Nonane	C ₉ H ₂₀	4.89
<i>n</i> -Decane	C ₁₀ H ₂₂	4.61
<i>n</i> -Undecane	C ₁₁ H ₂₄	4.43
<i>n</i> -Dodecane (kerosene)	C ₁₂ H ₂₆	4.13
Acetone	C ₃ H ₂ O	7.28

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.1.2 Stoichiometric Combustion

If the combustion process is stoichiometric, air or oxygen is being supplied at exactly the rate required to consume the fuel as it is being made available. The stoichiometric air-to-fuel ratio, r, is defined as

$$r = \frac{rate \ of \ supply \ of \ air}{rate \ of \ supply \ of \ fuel} = \frac{\dot{m}_{air}}{\dot{m}_{fuel}}$$

The combustion process is rarely complete. The efficiency of the combustion process can be assessed using the equivalence ratio, ϕ .

$$\phi = \frac{\left(\frac{fuel}{air}\right)_{\text{actual}}}{\left(\frac{fuel}{air}\right)_{\text{stoich}}} = \frac{\left(\frac{\dot{m}_{\text{fuel}}}{\dot{m}_{\text{air}}}\right)_{\text{actual}}}{\left(\frac{\dot{m}_{\text{fuel}}}{\dot{m}_{\text{air}}}\right)_{\text{stoich}}} = r\left(\frac{\dot{m}_{\text{fuel}}}{\dot{m}_{\text{air}}}\right)_{\text{actual}}$$

If $\phi < 1$, the combustion will be fuel lean. If $\phi > 1$, it will be fuel rich. Fuel-rich conditions can lead to incomplete combustion.

3.1.3 Heats of Combustion

The heat of combustion of a fuel is defined as the amount of heat released when unit quantity is oxidized completely to yield stable end products. Tables for a variety of products can be found in Sections 11.3 and 11.4 of this document.

3.1.4 Heats of Formation

The most stable compounds (CO_2 and H_2O) have the largest negative values, while positive values tend to indicate an instability with respect to the parent elements. This can indicate high chemical reactivity, and indeed heats of formation have been used in preliminary hazard assessment to provide an indication of the risks associated with new processes in the chemical industry. (See table on page 17.)

3.1.5 Specific Heat

Ср (J/m•K)					
S-resise	Temperature (K)				
species	298	500	1,000	1,500	2,000
СО	29.14	29.79	33.18	35.22	36.25
CO ₂	37.129	44.626	54.308	58.379	60.350
H ₂ O(g)	33.577	35.208	41.217	46.999	51.103
N ₂	29.125	29.577	32.698	34.852	35.987
0 ₂	29.372	31.091	34.878	36.560	37.777
Не	20.786	20.786	20.786	20.786	20.786
CH ₄	35.639	46.342	71.797	86.559	94.399

Heat Capacities of Selected Gases at Constant Pressure (101.1 kN/m²)

Source: SFPE *Handbook of Fire Protection Engineering*, fifth edition, with permission from SFPE.

. ·	No. of Moles	Thermal Capacity at 1,000 K		
Species		J/mol•K	J/K	
CO ₂	3	54.3	162.9	
H ₂ O	4	41.2	164.8	
N ₂	18.8	32.7	614.8	
Total thermal capacity (per mole of propane) =			942.5	

Thermal Capacity of the Products of Combustion of a Stoichiometric Propane/Air Mixture

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.1.6 Ignition

Methods to predict the ignition of solid materials involve the following properties:

- Specific heat (c_p)
- Thermal conductivity (k)
- Density (p)

The product of these properties ($k\rho c$) is called thermal inertia. Selected information can be found in Sections 11.7 and 11.13 of this document.

3.1.7 Ignition of Thermally Thin Material

When the external heat flux is much larger than the losses, estimation of the time to ignition can be made using the following equation:

$$t_{\rm ig} = \frac{\overline{\rho}_{\rm s} \overline{C} {\rm s} L \left(T_{\rm ig} - T_0 \right)}{\dot{q}_{\rm e}''}$$

where

 t_{ig} = time to ignition (s)

$$\overline{\rho}_{s} = \text{density} (\text{kg/m}^3)$$

 \overline{C}_{s} = specific heat (kJ/kg-K)

L =material thickness (m)

 $T_{i\sigma}$ = ignition temperature (°C)

 T_0 = initial temperature (°C)

 $\dot{q}_{\rm e}^{"}$ = external heat flux (kW/m²)

It applies to a material of thickness d heated on one side and insulated on the other, or a material of thickness 2d heated symmetrically.

The physical thickness, *d*, of the material must be less than the thermal penetration depth, δ_{T} , for it to be considered thermally thin. Typically, items with a thickness of less than about 1 mm can be treated as thermally thin.

The equation for thermal penetration depth is given as (Fundamentals of Fire Phenomena by J. Quintiere, equation 7.20a)

$$d \ll \delta_{\mathrm{T}} \approx \sqrt{\alpha t} \approx \frac{k(T_{\mathrm{s}} - T_{0})}{\dot{q}''}$$

or

$$Bi \equiv \frac{dh_{\rm c}}{k} \ll \frac{h_{\rm c} \left(T_{\rm s} - T_0\right)}{\dot{q}''}$$

where

d =material thickness (m)

 $\delta_{\rm T}$ = thermal penetration depth (m)

 α = thermal diffusivity (m²/s)

t = time(s)

k = thermal conductivity (W/m-K)

 $T_{\rm s}$ = temperature of solid (°C)

 T_0 = initial temperature (°C)

- \dot{q}'' = heat flux (kW/m²)
- Bi = Biot number (dimensionless)
- $h_{\rm c}$ = heat transfer coefficient (W/m²-K)

3.1.8 Ignition of Thermally Thick Material

Different equations are applicable to materials with high- and low-incident heat fluxes. The solution using these equations is an iterative process requiring a comparison of the ignition time to a characteristic time.

The characteristic time, $t_{\rm c}$, is determined as follows

$$t_{\rm c} = \frac{\overline{k} \,\overline{\rho}_{\rm s} \,\overline{C}_{\rm s}}{\left(h_{\rm T}\right)^2}$$

where

 $t_{\rm c}$ = characteristic time (s)

 \overline{k} = thermal conductivity (kW/m-K)

$$\overline{p}_{s} = \text{density} (\text{kg/m}^3)$$

$$\overline{C}_{s}$$
 = specific heat (kJ/kg-K)

 $h_{\rm T}$ = total heat-transfer coefficient (kW/m²-K)

It incorporates both convective and radiative heat losses.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.1.8.1 High-Incident Heat Flux

Where $t_{ig} \ll t_c$:

$$t_{\rm ig} = \frac{\pi}{4} \, \bar{k} \, \bar{\rho}_{\rm s} \, \bar{C}_{\rm s} \left(\frac{T_{\rm ig} - T_0}{\dot{q}_{\rm e}''} \right)^2$$

where

 t_{ig} = time to ignition (s)

- \bar{k} = thermal conductivity (kW/m-K)
- $\bar{\rho}_s$ = density (kg/m³)
- $\bar{C}_{\rm s}$ = specific heat (kJ/kg-K)
- T_{ig} = ignition temperature (°C)
- T_0 = initial temperature (°C)
- $\dot{q}_{\rm e}''$ = external heat flux (kW/m²)

The heat-loss term is not included, implying that it holds true where the heat-flux term is large.

Thermal response parameter, TRP, is defined as

$$TRP = \Delta T_{\rm ig} \sqrt{\bar{k} \,\bar{\rho}_{\rm s} \bar{C}_{\rm s} \frac{\pi}{4}}$$

where

TRP = thermal response parameter (kW-s^{1/2}/m²)

- ΔT_{ig} = ignition temperature above ambient (K)
 - \bar{k} = thermal conductivity (kW/m-K)

$$\bar{\rho}_s$$
 = density (kg/m³)

 \bar{C}_{s} = specific heat (kJ/kg-K)

For fire initiation, a material must be heated above its *CHF* value. And substitution into the high-incident heat-flux equation results in the following

$$\frac{1}{\sqrt{t_{ig}}} = \frac{\left(\dot{q}_{e}'' - CHF\right)}{TRP}$$

where

 t_{ig} = time to ignition (s)

- $\dot{q}_{\rm e}''$ = external heat flux (kW/m²)
- TRP = thermal response parameter (kW-s^{1/2}/m²)

 $CHF = critical heat flux (kW/m^2)$

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.1.8.2 Low-Incident Heat Flux

Where
$$t_{ig} > t_c$$
:

$$\frac{1}{\sqrt{t_{ig}}} = \frac{\sqrt{\pi} h_T}{\sqrt{\bar{k}_s \bar{\rho}_s \bar{C}_s}} \left[1 - \frac{h_T \left(T_{ig} - T_\infty \right)}{\dot{q_e}''} \right]$$

See Section 3.1.8.1 for variables and units.

3.1.9 Gas Flame Temperature

Gas	Adiabatic Flame Temperature at Lower Flammability Limit (K)
Methane	1,446
Ethane	1,502
Propane	1,554
<i>n</i> -Butane	1,612
<i>n</i> -Pentane	1,564
<i>n</i> -Heptane	1,692
<i>n</i> -Octane	1,632

Adiabatic Flame Temperature of Lower-Limiting Hydrocarbon Air Mixtures

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.1.10 Combustion Efficiency

Combustion efficiency is likely to vary from around 0.3–0.4 for heavily fire-retarded materials to 0.9 or higher in the case of oxygen-containing products.

The combustion efficiency, χ_{ch} (dimensionless), can be described as the ratio of the effective heat of combustion and the net heat of combustion:

$$\chi_{\rm ch} = \frac{\Delta H_{\rm ch}}{\Delta H_{\rm T}}$$

or

$$\chi_{\rm ch} = \frac{\Delta h_{\rm c}}{\Delta h_{\rm c}^{-1}}$$

where

 $\Delta H_{\rm ch}$ = effective heat of complete combustion per unit of fuel vaporized (mJ/kg)

 $\Delta H_{\rm T}$ = net heat of complete combustion per unit of fuel vaporized (mJ/kg)

 $\Delta h_{\rm c}$ = effective heat of combustion (MJ/kg)

 $\Delta h_{\rm c}^{\ 1}$ = net heat of combustion (MJ/kg)

3.1.11 Virtual Origin

The virtual origin is defined as the point source from which the plume above the flame appears to originate.

3.1.11.1 Virtual Origin for Pool Fires

$$z_0 = -1.02D + 0.083\dot{Q}^{2/5}$$

where

 $z_0 = virtual origin (m)$

D = effective diameter (m)

 \dot{Q} = total heat-release rate (kW)

If the pool is not circular

$$D = \left(\frac{4A}{\pi}\right)^{1/2}$$

where

 $A = \text{area of the pool} (m^2)$

3.1.11.2 Virtual Origin of Other Fire Types

$$z_0 = L - 0.175 \dot{Q}_c^2$$

where

 $z_0 = \text{virtual origin (m)}$

L =flame height (m)

 \dot{Q}_c = convective heat-release rate (kW)

3.2 Fire Growth and Heat Release Rates

3.2.1 Heat Release Rate—General

 $\dot{Q} = \dot{m}_{\text{fuel}} \times \Delta H_C$

 \dot{m}_{fuel} = mass burning rate (kg/s)

 ΔH_C = heat of combustion (kJ/kg)

3.2.2 Heat Release Rates—Example Fire Test

Following is an example of a heat-release-rate graph for a burning foam sofa based on fire test data:

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.2.3 Total Heat Release

Since the energy released by a fire is transported primarily through convection and radiation, the total heat-release rate can be defined as:

 $\dot{Q} = \dot{Q}_{\rm c} + \dot{Q}_{\rm r}$

3.2.4 Rate of Heat Release Within a Compartment

To calculate the heat release rate within the compartment, it is assumed that the fire is ventilation controlled and that all combustion takes place within the compartment:

 $\dot{Q} = \dot{m}_{air} \times \Delta H_c(air)$

where

 \dot{Q} = portion of the heat-release rate (kW)

 \dot{m}_{air} = mass flow rate of air into the compartment (kg/s)

 $\Delta H_{\rm c}(\text{air}) = \text{heat of combustion (kJ/kg) per unit mass of air consumed (3,000 kJ/kg)}$

$$\dot{m}_{\rm air} = 0.52 A_0 H_0^{1/2}$$

where

 A_0 = effective area of ventilation (m²)

 H_0 = height of the ventilation opening (m)

3.2.5 Rate of Heat Release for Pallets

The general heat-release rate for a standard pallet, 1.22 m × 1.22 m, can be determined using the following equation:*

 $\dot{Q} = 1,368 (1 + 2.14h_{\rm p})(1 - 0.03M)$

where

 \dot{Q} = heat release rate (kW)

 $h_{\rm p}$ = stack height (m)

M = moisture (%) with an assumed net heat of combustion of $12 \times 10^3 \text{ kJ} \cdot \text{kg}^{-1}$

* equation not appropriate for stacks less than 0.5 m in height

The general heat-release rate for a nonstandard pallet per-unit-pallet-floor-area can be determined using the following equation:

$$\dot{Q}'' = 919 (1 + 2.14h_{\rm p})(1 - 0.03M)$$

where

 \dot{Q}'' = heat release rate per unit area (kW/m²)

 $h_{\rm n}$ = stack height (m)

M = moisture (%) with an assumed net heat of combustion of $12 \times 10^3 \text{ kJ} \cdot \text{kg}^{-1}$

* equation not appropriate for stacks less than 0.5 m in height

3.2.6 Power-Law Fire Growth

These growth models do not model fire decay. The most common power-law growth model is the t^2 model:

 $\dot{Q} = \alpha \left(t - t_{\rm i}\right)^{\rm p}$

where

 \dot{Q} = heat release rate of fire at time *t* (kW)

 α = fire growth coefficient (kW/s^p)

t = time measured into the fire at which the heat release is being calculated (s)

 t_i = ignition reference time (incorporates time to ignition and incubation period) (s)

p = power (characterizing heat-release rate increase)

3.2.7 t² Fire Growth Rates

 $\alpha = \frac{1,055}{t_g^2}$ Slow $t_g = 600$ Medium $t_g = 300$ Fast $t_g = 150$ Ultra Fast $t_g = 75$

```
where
```

 t_g = time for fire to grow to 1,055 kw

3.2.8 Heat-Release Rates for t² Fires with Standard Growth Rates

The t^2 fire growth can be depicted as curves at various α values. These are curves that present liquid fuel fires with liquidphase and gas-phase flame spread.

3.2.9 t² Fires—with Fuel Constant

$$\dot{Q} = \alpha t^2$$

where

 \dot{Q} = heat release rate (kW)

 α = fire growth coefficient (kW/s²)

t = time after burning occurs (sec)

These fire heat-release rates curves are chosen to be representative of actual fires involving different commodities and geometric storage arrangements:

Slow $\dot{Q} = 0.00293t^2$ Medium $\dot{Q} = 0.01172t^2$ Fast $\dot{Q} = 0.0469t^2$ Ultrafast $\dot{Q} = 0.1876t^2$

where

 \dot{Q} is in kW

 t^2 is in sec

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.2.10 t^2 Fires – with Fire Growth Time

$$\dot{Q}(t) = \left(\frac{1,055}{t_{\rm g}^2}\right) \times t^2$$

where

 $\dot{Q}(t)$ = total heat-release rate at time t (kW)

t = time (sec)

 t_{σ} = time (sec) for a fire to grow from first appearance of flame to 1,055 kW

3.3 Heat Transfer

Methods for calculating the heat transferred by conduction, convection, and radiation.

3.3.1 Conduction

Conduction is the gradual spreading of heat through materials, molecule by molecule. The heat flux is related to the temperature differential as follows:

 $\dot{q}'' = \frac{\Delta T}{\left(\frac{t}{k}\right)}$ where

 \dot{q}'' = heat flux at material surface(kW/m²)

t =thickness (m)

k = thermal conductivity (kW/m-K)

 ΔT = change in temperature (K)

3.3.1.1 Rate of Heat Transfer Through a Solid

The rate that heat is transferred through a solid is directly proportional to the difference in temperature, as given by Fourier's law. Many thermal properties of materials are time-dependent (i.e., thermal conductivity and specific heat). Average values that span the range of temperatures under consideration are often used.

$$\dot{Q} = -kA\frac{dT}{dx}$$

where

 \dot{Q} = rate of heat transfer (kW)

k = thermal conductivity (kW/m-K)

A = surface area perpendicular to direction of heat transfer (m²)

T =temperature (K)

x = spatial location within the solid (m)

For heat-transfer rate per unit area:

$$\dot{q}'' = -k\frac{dT}{dx} = -k\left(\frac{T_2 - T_1}{x}\right)$$

where

 \dot{q}'' = heat-transfer rate per unit area (kW/m²)

k = thermal conductivity (kW/m-K)

 T_1 = temperature (K)

 T_2 = temperature (K)

x = spatial location within the solid (m)

3.3.1.2 Conduction Through a Plane Wall

$$\dot{Q} = \frac{-kA(T_2 - T_1)}{L}$$

where

- \dot{Q} = rate of heat transfer (kW)
- k = thermal conductivity (kW/m-K)

©2020 NCEES

- A = wall surface area normal to heat flow (m²)
- L = wall thickness (m)
- T_1 = temperature of one surface of the wall (K)
- T_2 = temperature of the other surface of the wall (K)

3.3.1.3 Thermal Resistance

$$\dot{Q} = \frac{\Delta T}{R_{\text{total}}}$$

where

- \dot{Q} = rate of heat transfer (kW)
- $\dot{\alpha}$ = rate of heat transfer (kW)
- ΔT = change in temperature (K)

$$R_{\text{total}} = \text{sum of resistances (K/kW)}$$

Resistances in series are added:

$$R_{\text{total}} = \Sigma R$$

For plane wall conduction resistance (K/kW)

$$R = \frac{L}{kA}$$

where

L = wall thickness

- k = thermal conductivity (kW/m-K)
- A = wall surface area normal to heat flow (m²)

For cylindrical wall conduction resistance (K/kW)

$$R = \frac{\ln\left(\frac{r_2}{r_1}\right)}{2\pi kL}$$

where

- L = cylinder length
- k = thermal conductivity (kW/m-K)
- r_1 = cylinder inside radius (m)

$$r_2$$
 = cylinder outside radius (m)

For convection resistance (K/kW)

$$R = \frac{1}{hA}$$

where

- h = convective heat-transfer coefficient (which depends on the material characteristics, geometry of the solid, and property of the fluid, including fluid parameters) (kW/m²-K)
- $A = surface area (m^2)$

Composite Plane Wall

To evaluate surface or intermediate temperatures:

$$\dot{Q} = \frac{T_1 - T_2}{R_{\rm A}} = \frac{T_2 - T_3}{R_{\rm B}}$$

where

 \dot{Q} = rate of heat transfer (kW)

 $T_1, T_2...$ = temperature at surface (K)

 $R_{\rm A}, R_{\rm B} \dots$ = resistance (K/kW)

3.3.2 Convection

Convection is the effect of conduction with the motion of heated fluids. Convection is a significant part of heat transfer through turbulent plumes associated with most fires. The basic convective heat-release rate (per unit area) equation is

$$\dot{q}'' = h\Delta T$$

where

 \dot{q}'' = convective heat-release rate per unit surface area (kW/m²)

h = convective heat-transfer coefficient (which depends on the material characteristics, geometry of the solid, and property of the fluid, including fluid parameters) (kW/m²-K)

 ΔT = temperature difference between the fluid and the surface area (K)
3.3.3 Radiation

Variations in the predicted versus measured heat fluxes vary considerably between methods. The following table is a summary of methods:

Method	Range of Use (kW/m ²)	Preferred Methods (kW/m ²)
Shokri and Beyler correlation	All heat fluxes, ground level only	
Point source model	0–5	\leq 5
Shokri and Beyler model	\geq 5	\geq 5
Mudan model	All heat fluxes	

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.3.3.1 Point-Source Radiation

This model is the simplest configuration of a radiant source and models the flame by a point source located at the center of the real flame. This model assumes a vertical target and θ is the angle between the target's normal and the line of sight from the target to the point-source location:

Nomenclature for Use with the Point-Source Model

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

The heat flux on a target for the point-source model (Drysdale) is given by the equation

$$\dot{q}''_{\rm r} = \frac{\dot{Q}_{\rm r}\cos\theta}{4\pi r^2}$$

where

- $\dot{q}''_{\rm r}$ = heat flux on a target perpendicular to radius from the point source (kW/m²)
- $\dot{Q}_{\rm r}$ = radiative heat release from the fire (typically 20–30% of $Q_{\rm total}$) (kW)

r = distance from plume center at H/2 to the target (m)

 θ = angle between the normal to the target and the line of sight from the target to the point-source location (degrees) (The worst case is that $\cos \theta = 1$ and this factor is ignored.)

3.3.3.2 Incident Heat Flux—Shokri and Beyler Correlation

This method assumes that the pool is circular or nearly circular. It also assumes that the target is vertical and located at ground level. Radiant heat flux is maximized near the mid-height of the radiating source. A target facing the center of radiation will give the maximum heat flux at a given location. At heights above ground level, the radiant heat flux is expected to exceed that given by this equation:

$$\dot{q}'' = 15.4 {\left(\frac{L}{D}\right)}^{-1.59}$$

where

 \dot{q}'' = incident radiant heat flux (kW/m²)

D = diameter of pool fire (m)

L = distance from center of pool fire to target edge (m)

(The edge of a circular pool has a value of $\frac{L}{D}$ of 0.5.)

The equivalent diameter for noncircular pools is given as

$$D = \sqrt{\frac{4A}{\pi}}$$

where

A =surface area of noncircular pool (m)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.3.3.3 Radiative Energy Output

 $\dot{Q}_{\rm r} = \chi_{\rm r} \dot{Q} = (0.21 - 0.0034D) \dot{Q}$

where

 $\dot{Q}_{\rm r}$ = total radiative energy output (kW)

 χ_r = radiative fraction (dimensionless)

 \dot{Q} = total heat release (kW)

D = pool diameter (m)

3.3.3.4 Radiative Fraction (χ_r) as a Function of Pool Diameter

The Solid Line Is a Curve Fit to the Data

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

 χ_r = radiative fraction (dimensionless)

D = pool diameter (m)

3.3.3.5 Energy Absorbed (Heat Transfer)

 $E = \varepsilon \times q'' \times A \times t$

where

- E = energy absorbed (kJ)
- ε = emissivity (dimensionless)
- q'' = heat flux (kW/m²)
- $A = \text{exposed area} (\text{m}^2)$
- t = time (sec)

3.3.3.6 Emissivity

 $q = \varepsilon \sigma T^4$

where

q = flame emissive power (W/m²)

- ε = emissivity (1.0 for a black body) (dimensionless)
- σ = Stefan-Boltzmann constant (5.67 × 10⁻⁸ W/m²–K⁴)
- T =temperature (K)

3.3.3.7 Emissivity—with Configuration Factor

For targets very near the fire, other methods that account for configuration (shape) factors are required.

Computing shape factors based on the algebraic formulae would take too long in the exam format; therefore, the shape factor will likely be given or read off a graph. It is important to understand the relationship of the source to the target when selecting shape factors. It is also important to understand when shape factors are mathematically combined.

If the emissive power from a surface is known, then it is possible to calculate the intensity of radiation falling at a point at a known distance from the surface by incorporating a configuration or shape factor, Φ :

 $\dot{q}'' = \Phi \varepsilon \sigma T^4$

where

 \dot{q}'' = heat flux (W/m²) Φ = configuration factor (dimensionless) ϵ = emissivity (dimensionless) σ = Stefan-Boltzmann constant (5.67 × 10⁻⁸ W/m²-K⁴) T = temperature (K)

Under steady-state conditions, Kirchhoff's law stipulates that the absorptivity of a surface is equal to its emissivity. Thus, under steady-state conditions, given a known incident heat flux and surface emissivity, the total energy absorbed by the surface can be calculated. In this case the total energy absorbed is also equal to the total energy emitted (i.e., steady state).

$$\dot{q}'' = \left(\sum F\right)\varepsilon\sigma T^4$$

where

 \dot{q}'' = flame emissive power (kW/m²)

 ε = emissivity (1.0 for a black body) (dimensionless)

 σ = Stefan-Boltzmann constant (5.67 × 10⁻⁸ W/m²-K⁴)

T = absolute temperature (K)

 $\sum F = \text{sum of configuration factors}$

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.3.3.8 Net Energy Exchange by Radiation Between Two Bodies

Body small compared to its surroundings:

$$\dot{Q}_{12} = \varepsilon \sigma A \left(T_1^4 - T_2^4 \right)$$

where

 \dot{Q}_{12} = net heat-transfer rate from the body (W)

- ε = emissivity of the body (1.0 for a black body) (dimensionless)
- σ = Stefan-Boltzmann constant (5.67 × 10⁻⁸ W/m²–K⁴)
- $A = \text{body surface area} (\text{m}^2)$
- T_1 = temperature (K) of the body surface
- T_2 = temperature (K) of the surroundings

3.4 Plumes and Flames

and Mean Velocity, u₀

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.4.1 Mean Flame Height

The mean flame height, L, is the distance above the fire source where the intermittency has declined to 0.5. This height marks the level at which the combustion reactions are essentially complete and the inert plume can be considered to begin.

Under normal atmospheric conditions and for most gaseous and liquid fuels:

$$L = H = -1.02D + 0.235 \dot{Q}^{2/5}$$

where

L =flame height (m)

H = flame height (m)

D = diameter(m)

 \dot{Q} = heat release rate of the pool fire (kW)

The equivalent diameter for noncircular pools is given as

$$D = \sqrt{\frac{4A}{\pi}}$$

where

A =surface area of noncircular pool

However, if the actual lower heat of combustion (H_c) and the actual mass stoichiometric ratio of air to volatiles (r) are known or if atmospheric conditions deviate significantly from normal, the following equation should be used:

$$L = -1.02D + A\dot{Q}^{2/5}$$

where

$$A = 15.6 \left[\frac{c_{\rm p} T_{\infty}}{g \rho_{\infty}^2 \left(\frac{H_{\rm c}}{r}\right)^3} \right]^{1/5}$$

where

- D = diameter(m)
- $g = \text{gravity} = 9.81 \text{ (m/s^2)}$

 $c_{\rm p}$ = specific heat of air at constant pressure = 1 kJ/kg-K

 T_{∞} = ambient temperature (K)

 ρ_{∞} = ambient density = 1.2 (kg/m³)

 $H_{\rm c}$ = actual lower heat of combustion (kJ/kg)

r = actual mass stoichiometric ratio (dimensionless)

$$Q = 37(L + 1.02D)^{5/2}$$

Note: 0.235 is an average applicable to many gaseous and liquid fuels under normal atmospheric conditions $(H_c/r \text{ within the range of } 2,900-3,200 \text{ kJ/kg})$.

3.4.1.1 Entrained Flow

 \dot{m}_{ent} = entrained mass flow rate in plume (kg/s)

 $\dot{m}_{\text{ent,L}} = \dot{m}_{\text{ent}}$ at mean flame height

 \dot{Q}_c = convective heat-release rate (kW)

z = height above fire (m)

At the mean flame height, $L(\Delta T_{\rm L} = 500 \text{ K})$:

 $\dot{m}_{\text{ent,L}}(\text{kg/s}) = 0.0058\dot{Q}_{\text{c}}(\text{kW})$

At and below the mean flame height, L, for fire source diameters of 0.3 m and greater:

$$\dot{m}_{\rm ent}(\rm kg/s) = 0.0058 \dot{Q}_{\rm c}(\rm kW) \cdot \frac{Z}{I}$$

3.4.2 Temperature of Smoke Layer

$$T = T_{\infty} + \frac{\dot{Q}_{\rm c}}{Mc_{\rm p}}$$

where

T = temperature of smoke in plume (K)

$$T_{\infty}$$
 = ambient temperature (K)

- \dot{Q}_c = convective heat-release rate (kW)
- M = mass flow rate of plume (kg/s)
- $c_{\rm p}$ = specific heat of air at constant pressure (1 kJ/kg-K)

3.4.3 Plume Centerline Temperature Rise

$$\Delta T_0 = 9.1 \left(\frac{T_{\infty}}{g c_p^2 \rho_{\infty}^2} \right)^{1/3} \dot{Q}_c^{2/3} \left(z - z_0 \right)^{-5/3}$$

 $z_0 = -1.02D + 0.083Q^{2/5}$

where

$$\Delta T_0 = T_0 - T_\infty$$

- ΔT_0 = temperature rise on centerline (K)
 - T_0 = centerline temperature (K)
- T_{∞} = ambient temperature (K)
- $g = \text{gravity} = 9.81 \text{ (m/s^2)}$
- $c_{\rm p}$ = specific heat of air at constant pressure (1 kJ/kg-K)

$$\rho_{\infty}$$
 = ambient density (1.2 kg/m³)

 $\dot{Q}_{\rm c}$ = convective heat-release rate (kW)

- z = elevation of interest (m)
- $z_0 = virtual origin (m)$
- D = effective diameter (m)
- Q = total heat-release rate (kW)

$$D = \sqrt{\frac{4A}{\pi}}$$

3.4.4 Plume Radius to Point Where Temperature Rise Has Declined to 0.5 ΔT_0

$$b_{\Delta T} = 0.12 \left(\frac{T_0}{T_{\infty}}\right)^{1/2} (z - z_0)$$

where

 $b_{\Delta T}$ = plume radius (m)

 T_0 = centerline temperature (K)

 T_{∞} = ambient temperature (K)

z = elevation above fire source (m)

 z_0 = elevation of virtual origin (m)

Plume Centerline Velocity

$$u_0 = 3.4 \left(\frac{g}{c_{\rho} \rho_{\infty} T_{\infty}}\right)^{1/3} \dot{Q}_{c}^{1/3} \left(z - z_0\right)^{-1/3}$$

where

 \dot{Q}_c = convective heat-release rate (kW)

- $g = \text{gravity} (9.81 \text{ m/s}^2)$
- T_{∞} = ambient temperature (K)

- $c_{\rm p}$ = specific heat of air at constant pressure (1 kJ/kg-K)
- ρ_{∞} = ambient density (1.2 kg/m³)
- $z_0 = \text{virtual origin (m)}$
- z = elevation of interest (m)

3.4.5 Weak Plume Relations for Point Sources

The plume radius and centerline values for mean excess temperature and mean velocity follow these equations:

$$b_{\Delta T} = 0.12 \left(\frac{T_0}{T_{\infty}}\right)^{1/2} (z - z_0)$$

$$\Delta T_0 = 9.1 \left(\frac{T_{\infty}}{g c_p^2 \rho_{\infty}^2}\right)^{1/3} \dot{Q}_c^{2/3} (z - z_0)^{-5/3}$$

$$u_0 = 3.4 \left(\frac{g}{c_p \rho_{\infty} T_{\infty}}\right)^{1/3} \dot{Q}_c^{1/3} (z - z_0)^{-1/3}$$

where

- $b_{\Lambda T}$ = plume radius to the point where the temperature ruse has declined to 0.5 ΔT_0 (m)
- ΔT_0 = centerline temperature (K)
- \dot{Q}_{c} = convective heat-release rate (kW)
- z = elevation above the fire source (m)

$$z_0 = virtual origin (m)$$

- u_0 = mean axial velocity on centerline (m/s)
- T_{∞} = ambient temperature (K)
- $g = \text{gravity} = 9.81 \text{ (m/s^2)}$
- $c_{\rm p}$ = specific heat of air at constant pressure (1 kJ/kg-K)
- ρ_{∞} = ambient density (1.2 kg/m³)

At standard temperature and pressure:

The factor 9.1
$$\left(\frac{T_{\infty}}{gc_p^2 \rho_{\infty}^2}\right)^{1/3}$$
 has a value of 25.0 K m^{5/3}kW^{-2/3}
The factor 3.4 $\left(\frac{g}{c_p \rho_{\infty} T_{\infty}}\right)^{1/3}$ has a value of 1.03 m^{4/3}s⁻¹kW^{-1/3}

3.4.6 Smoldering Combustion

The core of any combustion process is a global exothermic reaction that results in the release of heat and both gaseous and solid products. Whether smoldering or flaming will be the dominant mode is dictated by which chemical species is oxidized. If the oxidation takes place in the solid phase, smoldering is dominant; if the oxidation takes place in the gas phase, then flaming dominates.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.4.6.1 General Characteristics of Smoldering Combustion

The characteristic temperature, spread rate, and power of smoldering combustion are low compared to flaming combustion. Typical peak temperatures for smoldering are in the range of 450°C to 700°C, although very energetic and dense fuels such as coal can reach peaks at around 1,000°C. The effective heat of combustion taking into account the combustion efficiency is in the range of 6 to 12 kJ/g. These are much lower compared to typical values of around 1,500°C and 16–30 kJ/g, respectively, for flaming combustion. The heat-release rate per unit area of burning front is low and ranges from 10 to 30 kW/m². Because of these characteristics and despite the considerable variation in the chemical nature of smoldering fuels, smoldering spreads in a creeping fashion, typically around 1 mm/min, which is two orders of magnitude slower than flame spread.

Forward propagation occurs when the oxygen supply is moving in the direction of the smolder front. Opposed propagation (also called reverse) occurs when the oxygen supply is moving opposite to the smolder front. In general, real smoldering fires are multidimensional and cannot be classified into a single mode.

Forward smolder is faster than opposed, under the same fuel and oxidizer supply, and allows for more complete combustion of the fuel.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.4.6.2 Suppression of Smoldering Combustion

A smoldering fire can be extraordinarily difficult to suppress. Experiments on heaps of coal show that smoldering requires large amounts of water. For example, the amount of water required to suppress smoldering coal was measured to be in the range from 1 to 2 L of water per kg of burning fuel. Moreover, smoldering requires lower oxygen concentration to be smothered, around 10% O_2 , compared to 16% O_2 for flaming.

The CO/CO_2 ratio, which can be thought of as an index of the incompleteness of combustion, is ~0.4 in smoldering but ~0.1 in flaming combustion.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.4.6.3 Gas Emissions

The mean particle size of the aerosol in smoldering cellulose was measured to be in the range of 2 to 3 μ m; this is about 50–200 times larger than the sooty particulates produced by flaming combustion.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.4.7 Opposed-Flow Flame Spread

 $\boldsymbol{\varphi}$ is a parameter that can be quantified with bench scale testing:

$$V_{\rm p} \approx \frac{\Phi}{k\rho c \left(T_{\rm ig} - T_0\right)^2}$$

where

- $V_{\rm p}$ = flame spread velocity (m/s)
- $k = \text{conductivity} [W/(m^{\circ}C)]$

 $\rho = \text{density} (\text{kg/m}^3)$

- $c = \text{specific heat } [J/(kg^{\circ}C)]$
- T_{ig} = temperature at ignition (°C)
- T_0 = initial temperature (°C)

3.4.8 Wind-Aided Flame Spread Velocity on Thermally Thick Solid

Upward Wall Flame Spread

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

The flame spread occurs in two manners: advancement of the flame front and advancement of the ignition front of the solid surface. The location of the ignition front is identified as the location where the surface temperature has reached the ignition temperature.

$$V_{\rm p} = \frac{4\dot{q}''_{\rm fc}^2 \delta_{\rm fc}}{\pi k \rho c (T_{\rm ig} - T_0)^2} = \frac{(x_{\rm fc} - x_{\rm p})}{t_{\rm ig}^*}$$
$$t_{\rm ig}^* = \frac{\pi k \rho c (T_{\rm ig} - T_0)^2}{4\dot{q}''_{\rm fc}^2}$$

where

 $V_{\rm p}$ = characteristic steady-flame spread velocity (m/s)

 $x_{\rm fc}$ = characteristic flame height (m)

$$x_{\rm fc} = x_{\rm p} + \delta_{\rm fc}$$

 x_{p} = pyrolysis front length (m)

 t_{ig}^* = characteristic time to ignition (sec)

 δ_{fc} = characteristic preheat distance, essentially the distance between the flame front and the ignition front

k = thermal conductivity (kW/m-K)

$$\rho = \text{density} (\text{kg/m}^3)$$

- c = heat capacity (kJ/kg-K)
- T_{ig} = ignition temperature of the material (K)

 T_0 = initial surface temperature (K)

 $\dot{q}''_{\rm fc}$ = characteristic flame heat flux (kW/m²)

3.5 Flammable and Combustible Liquids Fires

3.5.1 Pool Fires Mass Loss Rate

 $\dot{m}'' = \dot{m}''_{\infty} \left(1 - e^{-k\beta D} \right)$

where

- \dot{m}'' = mass loss rate per unit area (kg/m²-s)
- \dot{m}'_{∞} = mass loss rate per unit area for an infinite pool diameter (kg/m²-s)
 - D = pool diameter (m)
- $k\beta$ = extinction absorption coefficient (m⁻¹)

3.5.2 Liquid Fuel Flame Height (Mean Flame Height)

See Section 3.4.1

3.5.3 Burning Duration of Pool Fire

3.5.3.1 Actual Burning Duration

$$t_{\rm b,a} = \frac{\text{Mass of liquid}}{\text{Mass burning rate}} \cdot \frac{V_{\rho}}{A \dot{m}''} = \frac{m}{A \dot{m}''} = \frac{4m}{\pi D^2 \dot{m}''}$$

where

 $t_{\rm b,a}$ = actual burning duration (sec)

- m = mass of liquid (kg)
- V = volume of liquid (m³)
- \dot{m}'' = mass loss rate per unit area (kg/m²-s)
- ρ = density of liquid (kg/m³)
- A = burning surface area (m²)
- D = burning surface diameter (m)

3.5.3.2 Idealized Burning Duration

$$t_{\rm b,I} = \frac{\text{Mass of liquid}}{\text{Mass burning rate}} \cdot \frac{V_{\rho}}{A\dot{m}'_{\infty}} = \frac{m}{A\dot{m}'_{\infty}} = \frac{4m}{\pi D^2 \dot{m}'_{\infty}}$$

where

- t_{hI} = idealize burning duration (s)
- m = mass of liquid (kg)
- V = volume of liquid (m³)
- \dot{m}''_{∞} = mass loss rate per unit area (kg/m²-s)
 - = peak mass burning rate of the fuel per unit area (kg/m^2-s)
 - D = burning surface diameter (m)
 - ρ = density of liquid (kg/m³)
 - A =burning surface area (m²)

3.5.4 HRR from Liquid Pool Fire

The empirical relationship for predicting the heat-release rate from liquid pool fires is

 $\dot{q} = \Delta h_{\rm c} \dot{m}''_{\infty} \left(1 - e^{-k\beta \rm D} \right) A$

where

 \dot{q} = heat release rate (kW)

D = pool diameter (m)

 \dot{m}''_{∞} = mass loss rate per unit area for an infinite pool diameter (kg/m²/s)

 $-k\beta$ = extinction-absorption coefficient (m⁻¹)

 $\Delta h_{\rm c}$ = net heat of combustion (kJ/kg)

 $A = \text{area of pool} (\text{m}^2)$

3.6 Compartment Fires

Compartment fires are often discussed in terms of growth stages:

- Ignition
- Growth
- Flashover
- Fully developed
- Decay

The following is taken from this source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

The total surface area of a compartment is calculated as

 $A_{\rm T} = A_{\rm floor} + A_{\rm walls} + A_{\rm ceiling} - A_{\rm openings}$

3.6.1 Ventilation Factor

The ventilation factor is defined as

 $A_0\sqrt{H_0}$

where

 $A_{\rm O}$ = area of opening (m²)

 $H_{\rm O}$ = height of opening (m)

3.6.2 Preflashover Compartment Temperatures—with Mechanical Ventilation

The following is an equation for forced ventilation fires based on the method of Foote et al:

$$\frac{\Delta T_{\rm g}}{T_{\infty}} = 0.63 \left(\frac{\dot{Q}}{m_{\rm g} T_{\infty} c_{\rm p}}\right)^{0.72} \left(\frac{h_{\rm k} A_{\rm T}}{m_{\rm g} c_{\rm p}}\right)^{-0.36}$$

where

 $\Delta T_{\rm g} = T_{\rm g} - T_{\infty}$

 $\Delta T_{\rm g}$ = upper gas temperature rise above ambient (K)

 $T_{\rm g}$ = upper gas temperature (K)

 T_{∞} = ambient gas temperature (K)

 \dot{Q} = total heat release rate (kW)

 $h_{\rm k}$ = effective heat-transfer coefficient (kW/m²-K)

 $A_{\rm T}$ = total area of compartment enclosing surfaces (m²)

 $c_{\rm p}$ = specific heat of gas (kJ/kg-K)

 $m_{\rm g}$ = compartment mass ventilation rate (kg/s)

$$m_{\rm g} = \dot{V} = (1.18 \text{ kg/m}^3)$$

where

 \dot{V} = ventilation flow rate (m³/s)

Note: 1 cfm = $.00047 \text{ m}^{3/s}$

3.6.3 Preflashover Compartment Temperatures—with Natural Ventilation

$$\Delta T_{\rm g} = 480 \left[\frac{\dot{Q}}{\sqrt{g} \left(c_{\rm p} \rho_{\infty} T_{\infty} A_{\rm O} \right) \sqrt{H_{\rm O}}} \right]^{2/3} \left[\frac{h_{\rm k} A_{\rm T}}{\sqrt{g} \left(c_{\rm p} \rho_{\infty} A_{\rm O} \right) \sqrt{H_{\rm O}}} \right]^{-1/3}$$

where

 $\Delta T_{\rm g} = T_{\rm g} - T_{\infty}$

 ΔT_{g} = upper gas temperature rise above ambient (K)

 $T_{\rm g}$ = upper gas temperature (K)

 T_{∞} = ambient gas temperature (K)

 \dot{Q} = total heat-release rate (kW)

- $h_{\rm k}$ = effective heat-transfer coefficient (kW/m²-K)
- $A_{\rm T}$ = total area of compartment enclosing surfaces (m²)
- $A_{\rm O}$ = area of opening (m²)

 $H_{\rm O}$ = height of opening (m)

- $g = 9.81 \text{ (m/s^2)}$
- $c_{\rm p} = 1.0 \text{ kJ/kg-K}$ (specific heat)
- $\rho_{\infty} = 1.2 \text{ kg/m}^3$ (ambient air density)

$$T_{\infty} = 295 \text{ K}$$

3.6.4 Preflashover Compartment Temperatures—with Natural Ventilation at Standard Temperature and Pressure

The following is a simplified equation for naturally ventilated fire assuming typical values for ambient conditions, based on the method of McCaffrey et al:

$$\Delta T_{\rm g} = 6.85 \left(\frac{Q^2}{h_{\rm k} A_{\rm T} A_{\rm O} \sqrt{H_{\rm O}}}\right)^{1/3}$$

where

 $\Delta T_{g} = T_{g} - T_{\infty}$

 ΔT_g = upper gas temperature rise above ambient (K)

 T_{σ} = upper gas temperature (K)

 T_{∞} = ambient gas temperature (K)

Q = total heat-release rate (kW)

 $h_{\rm k}$ = effective heat-transfer coefficient (kW/m²-K) [see Section 3.6.5 for calculation of $h_{\rm k}$]

 $A_{\rm T}$ = total area of compartment enclosing surfaces (m²)

- $A_{\rm O}$ = area of opening (m²)
- H_{Ω} = height of opening (m)

3.6.5 McCaffrey Flashover Heat-Release Equations

$$Q_{\rm fl} = 610 (h_{\rm k} A_{\rm T} A_{\rm O} \sqrt{H_{\rm O}})^{1/2}$$

where

 $Q_{\rm fl}$ = heat-release rate required for flashover (kW)

- $h_{\rm k}$ = effective heat-transfer coefficient (kW/m²-K)
- $A_{\rm T}$ = total area of compartment surfaces (m²)

$$A_{\Omega}$$
 = area of opening (m²)

 $H_{\rm O}$ = height of opening (m)

Determine thermal penetration time (t_p) :

$$t_p = \left(\frac{\rho c}{k}\right) \left(\frac{\delta}{2}\right)^2$$

where time of exposure (t) > thermal penetration time (t_p)

$$h_{\rm k} = \frac{k}{\delta}$$

where $t \le t_p$

$$h_{\rm k} = \left(\frac{k\rho c}{t}\right)^{1/2}$$

k = thermal conductivity of wall material (kW/m-K)

 δ = thickness (m)

where

 ρ = density of compartment surface (kg/m³)

c = specific heat of compartment surface material (kJ/m-K)

k = thermal conductivity of compartment surface (kW/m-K)

d = thickness of compartment surface (m)

3.6.6 Flashover References

Flashover is at 20 kW/m² or 500–600°C.

3.6.7 Heat Release Rate Needed for Flashover

This is a simplified method for predicting the heat-release rate needed to cause flashover, using the Babrauskas method:

$$\dot{Q} = 750A_{\rm O}\sqrt{H_{\rm O}}$$

Using the Thomas method, the equation is as follows:

$$\dot{Q} = 7.8A_{\rm T} + 378A_{\rm O} (H_{\rm O})^{1/2}$$

where

 $A_{\rm T}$ = total area of the compartment enclosing surfaces (m²)

 $A_{\rm O}$ = area of opening (m²)

 \dot{Q} = heat-release rate required to cause flashover (kW)

 $H_0 =$ height of opening (m)

3.6.8 Post-Flashover Compartment Temperature

Use Law's formula to calculate post-flashover compartment fire temperatures:

$$T_{g(\text{max})} = 6,000 \frac{(1 - e^{-0.1\Omega})}{\sqrt{\Omega}}$$
$$\Omega = \frac{(A_{\text{T}} - A_{\text{O}})}{A_{\text{O}}\sqrt{H_{\text{O}}}}$$

where

$$A_{\rm T}$$
 = total area of compartment enclosing surfaces (m²)

$$A_{\rm O}$$
 = area of opening (m²)

 $H_{\rm O}$ = height of opening (m)

$$T_{\rm g} = T_{\rm g(max)} (1 - e^{-0.05\Psi})$$

where

$$T_{\rm g}$$
 = average temperature in the compartment (°C)

$$\Psi = \frac{L}{\left[A_{\rm O} \left(A_{\rm T} - A_{\rm O}\right)\right]^{1/2}}$$

where

L = fire load equivalent to wood (kg)

 $A_{\rm T}$ = total area of compartment enclosing surfaces (m²)

 $A_{\rm O}$ = area of opening (m²)

 Ψ fire-loading calculation can be assumed 1 where only upper layer temperature is requested.

3.6.9 Transient Ceiling Jet Flow in a Room

Transient Ceiling Jet Flow in a Room and Corridor Source: SFPE *Handbook of Fire Protection Engineering*, fifth edition, with permission from SFPE.

3.6.10 Ceiling Jet Flow Beneath an Unconfined Ceiling

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Equations below are for axisymmetric fires, where the fire source is away from the enclosure walls. These correlations were developed for data where the fire source was at a distance from the enclosure walls of at least 1.8 times the ceiling height. Where the fire source is against a flat wall, use $2\dot{Q}$ instead of \dot{Q} . Where the fire source is in a 90° corner, use $4\dot{Q}$ instead of \dot{Q} .

3.6.10.1 Weak Plume-Driven Temperature of Ceiling Jet (Alpert)

$$T_{\text{max}} - T_{\infty} = 16.9 \frac{\dot{Q}^{2/3}}{H^{5/3}} \text{ for } \frac{r}{H} \le 0.18$$
$$T_{\text{max}} - T_{\infty} = 5.38 \frac{\left(\frac{\dot{Q}^{2/3}}{H^{5/3}}\right)}{\left(\frac{r}{H}\right)^{2/3}} \text{ for } \frac{r}{H} > 0.18$$

where

 T_{max} = maximum temperature (°C)

 T_{∞} = ambient temperature (°C)

 \dot{Q} = total heat-release rate (kW)

H = distance from fire source to ceiling (m)

r = radial distance from plume centerline (m)

3.6.10.2 Weak Plume-Driven Velocity of Ceiling Jet (Alpert)

$$U = 0.947 \left(\frac{\dot{Q}}{H}\right)^{1/3} \text{ for } \frac{r}{H} \le 0.15$$
$$U = 0.197 \frac{\left(\frac{\dot{Q}}{H}\right)^{1/3}}{\left(\frac{r}{H}\right)^{5/6}} \text{ for } \frac{r}{H} > 0.15$$

where

- U = maximum ceiling-jet gas velocity (m/s)
- \dot{Q} = total heat-release rate (kW)
- H = distance from fire source to the ceiling (m)
- r = radial distance from plume centerline (m)

Many of the correlations described hereafter were developed from tests involving heat-release rates that ranged from 600 kW to 98 MW and total ceiling heights that ranged from 4.6 m to 18 m. These data should be considered limitations when using the correlations.

3.6.10.3 Strong Plume-Driven Plume Fields

When the flame height is comparable to the ceiling height above the burning fuel, the resulting ceiling jet is driven by a strong plume.

$$b_{\Delta T} = 0.12 \left(\frac{T_0}{T_{\infty}}\right)^{1/2} (z - z_0)$$

$$\Delta T_0 = 9.1 \left(\frac{T_{\infty}}{gc_p^2 \rho_{\infty}^2}\right)^{1/3} \dot{Q}_c^{2/3} (z - z_0)^{-5/3}$$

$$u_0 = 3.4 \left(\frac{g}{c_p \rho_{\infty} T_{\infty}}\right)^{1/3} \dot{Q}_c^{1/3} (z - z_0)^{-1/3}$$

where

 $b_{\rm DT}$ = plume radius to the point where the temperature rise has declined to 0.5 $\Delta T_{0 \, (m)}$

 T_0 = centerline temperature (K)

$$T_{\infty}$$
 = ambient temperature (K)

- z = elevation above the fire source (m)
- z_0 = elevation of the virtual origin (see Section 3.1.11.1)
- $g = \text{acceleration of gravity } (\text{m/s}^2)$
- $c_{\rm p}$ = specific heat of air at constant pressure (kJ/kg-K)
- ρ_{∞} = ambient density (kg/m³)
- \dot{Q}_c = convective heat-release rate (kW/m²-K)
- $u_0 = \text{mean velocity (m/s)}$

3.6.11 Vent Flows

Two-layer method:

Outflow $u_u = \left(2g \frac{\rho_a - \rho}{\rho} y\right)^{1/2}$

where

 $u_{\rm u}$ = velocity of upper layer (m/s)

- y = distance above neutral plane (m)
- ρ_a = atmospheric air density (kg/m³)

 ρ = upper layer air density (kg/m³)

$$\dot{m}_{\rm u} = \frac{2}{3}Cb \sqrt{2g\rho(\rho_{\rm a}-\rho)} (h_{\rm v}-h_{\rm n})^{3/2}$$

where

 $\dot{m}_{\rm u}$ = mass flow rate of upper layer (kg/s)

b =width of vent (m)

C = experimentally determined flow coefficient (0.68)

$$h_{\rm v}$$
 = height of vent (m)

 $h_{\rm n}$ = height of neutral plane (m)

- ρ_a = atmospheric air density (kg/m³)
- ρ = upper layer air density (kg/m³)

Mass conservation:

$$\frac{d}{dt}(\rho V_{\rm R}) = \sum \left(-\dot{m}_{ij} + \dot{m}_{ji}\right)$$

Heat conservation:

$$c_{\rm p}\frac{d}{dt}\left(\rho V_{\rm R}T\right) = \dot{Q} - \dot{Q}_{\rm h} + c_{\rm p}\sum\left(-\dot{m}_{ij}T + \dot{m}_{ji}T_{j}\right)$$

Ideal gas law:

$$\rho T = \frac{Mp}{R}$$

where

 c_p = specific heat at constant pressure (kJ/kg-K)

M = average molecular weight of flowing gas (kg/kg or mol)

p = pressure (Pa)

- R = universal gas constant = 8.314 J/K-mol
- $\rho = \text{density} (\text{kg/m}^3)$
- T =temperature (K)

j = index of adjacent room connected by vents with the room considered

$V, V_{\rm R}$ = volume of the room (m³)

 \dot{m}_{ij} = mass outflow rate from room *i* to an adjacent room *j* (kg/s)

- \dot{m}_{ji} = mass inflow rate to room *i* from an adjacent room *j* (kg/s)
- \dot{Q} = heat-release rate of fire source (kW)
- $\dot{Q}_{\rm h}$ = heat loss from the room gas due to heat transfer (kW)
- \sum = summation with respect to all the vents between all the adjacent rooms

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Fire Room at the Stage of Smoke Layer Filling

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Mass inflow and outflow rates through the vent, \dot{m}_{d} and \dot{m}_{u} , are given as a function of the neutral plane height, h_{n} :

$$\dot{m}_{\rm d} = \frac{\sqrt{2}}{3} Cb \sqrt{2g\rho_{\rm a}(\rho_{\rm a}-\rho)} h_{\rm n}^{3/2} \qquad \text{(inflow)}$$
$$\dot{m}_{\rm u} = \frac{\sqrt{2}}{3} Cb \sqrt{2g\rho_{\rm a}(\rho_{\rm a}-\rho)} (h_{\rm v}-h_{\rm n})^{3/2} \qquad \text{(outflow)}$$
$$h_{\rm n} = \frac{h_{\rm v}}{1 + \left(\frac{\rho_{\rm a}}{\rho}\right)^{1/3}} = \frac{h_{\rm v}}{1 + \left(\frac{T}{T_{\rm a}}\right)^{1/3}}$$

where

 $g = \text{gravity constant } (\text{m/s}^2)$

b =width (m)

 $h_{\rm v}$ = ventilation opening height (m)

 $h_{\rm n}$ = neutral plane height (m)

- ρ_a = density of the cold (lower) layer (kg/m³)
- ρ = density of the hot (upper) layer (kg/m³)

3.6.12 Required Smoke Vent Area

Configuration and Pressure Profile of Natural Smoke Venting

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

1. Calculate the plume flow rate (\dot{m}) at layer interface height y_c : $\dot{m} = 0.08 \dot{Q}^{1/3} y_c^{5/3}$

where

- $y_{\rm c}$ = layer interface height (m)
- \dot{m} = plume mass flow rate (kg/s)
- \dot{Q} = heat release rate (kW)
- 2. Calculate the smoke layer temperature (*T*):

$$T = T_{\rm a} + \frac{Q}{c_{\rm p}m + a_{\rm k}A_{\rm w}}$$

where

- \dot{Q} = heat release rate (kW)
- $a_{\rm k}$ = effective heat-transfer coefficient (kW/m²-K)
- T = smoke layer temperature (K)
- $T_{\rm a}$ = room ambient air temperature (K)
- $A_{\rm w}$ = boundary wall area exposed to heat transfer from smoke layer (m²)
- m = mass (kg)
- $c_{\rm p}$ = specific heat at constant pressure (kJ/kg-K)
- 3. Calculate the smoke layer density (ρ): $\rho = \frac{352.8}{T}$

where

 ρ = smoke layer density (kg/m³)

- T = smoke layer temperature (K)
- 4. Calculate the pressure $\Delta[\Delta p(0)]$ at floor level:

$$\Delta p(0) = \frac{\dot{m}^2}{2\rho_{\rm a} (CA_{\rm d})^2}$$

where

- \dot{m} = plume mass flow rate (kg/s)
- $\rho_a = air density (kg/m^3)$
- C = experimentally determined flow coefficient (0.68)
- A_{d} = area of inflow vent near floor (m²)
- 5. Calculate the pressure at the smoke vent $[\Delta p(h_c)]$:

```
\Delta p(h_{\rm e}) = -\Delta p(0) + (\rho_{\rm a} - \rho)g(h_{\rm e} - y_{\rm c})
```

$$h_{\rm e} = {\rm smoke \ vent \ height \ (m)}$$

- $y_{\rm c}$ = layer interface height (m)
- $\rho_a = air density (kg/m^3)$
- p =smoke layer density (kg/m³)

 $\Delta p(0) = \text{pressure at floor level } (\rho_a)$

6. Calculate the smoke vent area, A_{e} :

$$A_{\rm e} = \frac{m}{C\sqrt{2\rho[\Delta p(h_e)]}}$$

where

 $A_{\rm e} = {\rm area} \, ({\rm m}^2)$

 $h_{\rm e} = {\rm smoke \ vent \ height \ (m)}$

 $y_{\rm c}$ = layer interface height (m)

 $\rho_a = air density (kg/m^3)$

p = smoke layer density (kg/m³)

 $\Delta p(0) = \text{pressure at floor level } (\rho_a)$

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.6.13 Smoke Characterization and Damage Potentials

The governing mode of smoke deposition is primarily dependent on whether the transport flow is turbulent or laminar and on the particle size. The flow type can be classified by the magnitude of the particle Reynolds number:

$$Re_{\rm p} = \frac{\rho_{\rm g} d_{\rm p} V}{\eta}$$

where

 ρ_g = gas density (kg/m³)

 $d_{\rm p}$ = particle diameter (m)

$$V =$$
particle velocity (m/s)

 η = gas viscosity (kg/s-m)

Laminar flow occurs when the Reynolds number is less than 1 ($Re_p < 1$).

Turbulent flow occurs when the Reynolds number is greater than 1 ($Re_p > 1$).

3.6.13.1 Laminar Flow—Smoke Particles > 1 μm

The following equation applies for smoke particles $> 1 \mu m$:

$$V_{\rm TS} = \frac{\rho_{\rm p} d_{\rm p}^2 g}{18\eta}$$

where

 ρ_g = particle density (kg/m³)

 d_{p} = particle aerodynamic equivalent diameter (m)

g = gravitational acceleration (9.81 m/s²)

 $V_{\rm TS}$ = particle terminal settling velocity (m/s)

3.6.13.2 Laminar Flow—Smoke Particles < 1 μm

The following equation for slip correction applies for smoke particles $< 1 \mu m$:

$$C_{\rm c} = 1 + \frac{2.52\Lambda}{d_{\rm p}}$$

where

 C_{c} = slip correction factor (dimensionless)

 Λ = mean free path (µm), which is 0.066 µm for air at 1 atm and 20°C

 $d_{\rm p}$ = particle diameter (µm)

This slip correction factor applies to the right-hand side of the equation for Laminar Flow – Smoke Particles > 1 μ m, increasing the terminal settling velocity.

3.6.13.3 Turbulent Flow—Smoke Particles > 1 μm

$$V_{\rm TS} = \left(\frac{4\rho_{\rm p}d_{\rm p}g}{3C_{\rm D}\rho_{\rm g}}\right)^{1/2}$$

where

 $V_{\rm TS}$ = particle terminal settling velocity (m/s)

 $C_{\rm D}$ = drag coefficient (dimensionless)

 $\rho_{\rm p}$ = particle density (kg/m³)

$$d_{\rm p}$$
 = particle diameter (m)

- $g = \text{gravity constant } (\text{m/s}^2)$
- ρ_g = gas density (kg/m³)

3.6.13.4 For Reynolds Number Greater than 1 and Less than 1,000 ($1 < Re_p < 1,000$)

$$C_{\rm D} = \frac{24}{Re_{\rm p}} \left(1 + 0.15 \, Re_{\rm p}^{0.687} \right)$$

3.6.13.5 Turbulent Flow—Smoke Particles < 1 μm

Drag Coefficient Versus Particle Reynolds Number

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

$$D = \frac{k_{\beta} T C_{\rm c}}{3\pi \eta d_{\rm p}}$$

where

- $D = \text{particles' diffusion coefficient } (\text{m}^2/\text{s})$
- $k_{\rm \beta}\,$ = Boltzmann constant = 1.380649 \times 10⁻²³ J/K
- T =temperature (K)
- $C_{\rm c}$ = slip correction factor (dimensionless)
- η = gas viscosity (Pa-s)
- $d_{\rm p}$ = particle diameter (m)

3.6.14 Light Transmission Through Smoke

$$\frac{I}{I_0} = \exp(-OD_{\lambda}l)$$

where

- I = transmitted intensity (cd)
- I_0 = initial intensity (cd)

 OD_{λ} = optical density (m⁻¹)

l = optical path length (m)

$$f_v = \frac{OD_\lambda \lambda}{C}$$

where

 OD_{λ} = optical density (m⁻¹)

 f_v = smoke volume fraction

- λ = incident wavelength (m)
- c = average coefficient of smoke extinction (dimensionless)

3.6.15 Smoke Mass Concentration

$$C_{\rm s} = \rho_{\rm s} f_{\rm v} = \frac{\rho_{\rm s} O D_{\lambda} \lambda}{c}$$

where

 $C_{\rm s}$ = smoke mass concentration (kg/m³)

 $f_{\rm v}$ = smoke volume fraction

- ρ_s = smoke particle density (kg/m³)
- OD_{λ} = optical density (m⁻¹)
 - λ = incident wavelength (m)
 - c = average coefficient of smoke extinction (dimensionless)

Terminal settling velocity is

$$V_{\rm TS} = \frac{\rho_0 d_{\rm a}^2 g}{18\eta}$$

where

 $V_{\rm TS}$ = terminal settling velocity (m/s)

 ρ_0 = standard particle density (kg/m³)

 d_a = aerodynamic equivalent diameter (m)

 $g = \text{gravitational acceleration } (\text{m/s}^2)$

 $\eta = \text{gas viscosity (kg/s-m)}$

Aerodynamic Mass Mean Diameter of Smoke from Flaming Plastics

Material	$d_{\mathrm{ag}}(\mu \mathbf{m})$	σ_{g}	Environment
Nylon	0.4	2.0	1.0 m^3 smoke box
Polycarbonate	3.0	3.4	1.0 m ³ smoke box
Polyethylene	1.0	2.5	1,200 m ³ enclosure
Polymethylmethacrylate	2.3	4.4	1,200 m ³ enclosure
	0.7–1.0	NR	0.37 m ² duct [28]
Polypropylene	1.2	2.0	1,200 m ³ enclosure
Polyurethane	2.0	1.8	0.18 m ² duct [29]
Polyvinylchloride	1.1	1.8	1.0 m ³ smoke box
Polystyrene	2.0	2.6	1.0 m ³ smoke box
	2.4	2.1	1,200 m ³ enclosure
	1.5–2.5	NR	0.37 m ² duct [28]

NR Not reported

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.6.16 Mass Burning Rate

The formula to estimate the mass burning rate of the fuel can be given as

$$\dot{m}_{\rm f} = \frac{qA}{L}$$

where

 $\dot{m}_{\rm f}$ = mass burning rate of the fuel (kg/s)

q = heat flux to the fuel surface (kW/m²)

A =surface area of the fuel (m²)

L = heat of gasification (kJ/kg)

The rate of energy release is equal to the mass loss rate of the fuel times the heat of combustion of the fuel:

 $\dot{Q} = \dot{m}_{\rm f} \Delta h_{\rm c}$

where

 \dot{Q} = energy release rate of the fire (kW)

 $\dot{m}_{\rm f}$ = mass burning rate of the fuel (kg/s)

 Δh_c = effective heat of combustion of the fuel (kJ/kg)

3.6.17 Heat-Release Rate

$$\dot{Q} = \dot{m}_{\rm g} c_{\rm p} (T_{\rm g} - T_{\infty}) + q_{\rm loss}$$

where

 \dot{Q} = energy-release rate of the fire (kW)

 $\dot{m}_{\rm g}$ = gas flow-rate out of the opening (kg/s)

 $c_{\rm p}$ = specific heat of gas (kJ/kg-K)

 $T_{\rm g}$ = temperature of the upper gas layer (K)

 T_{∞} = ambient temperature (K)

 $q_{\rm loss}$ = net radiative and convective heat transfer from the upper gas layer (kW)

3.6.18 Rate of Heat Transfer to Surfaces

The rate of heat transfer to the surfaces is approximated by

$$q_{\rm loss} = h_{\rm k} A_{\rm T} \left(T_{\rm g} - T_{\infty} \right)$$

where

 $h_{\rm k}$ = effective heat-transfer coefficient (kW/m²-K)

 $A_{\rm T}$ = total area of the compartment enclosing surfaces (m²)

 T_{g} = temperature of the upper gas layer (K)

 T_{∞} = ambient temperature (K)

3.6.19 Heat-Release Rate with Natural Ventilation

 $\dot{Q} = 610 \left(h_{\rm k} A_{\rm T} A_{\rm O} \sqrt{H_{\rm O}} \right)^{1/2}$

where

 $h_{\rm k}$ = effective heat-transfer coefficient (kW/m²-K)

 $A_{\rm T}$ = total area of compartment enclosing surfaces (m²)

 $A_{\rm O}$ = area of opening (m²)

 $H_{\rm O}$ = height of opening (m)

Alternatively, the equation is sometimes expressed using a coefficient of 620 (instead of 610). This is based on a difference in the value used for the specific heat of air. The use of either 610 or 620 is acceptable within the accuracy of the expression.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

3.6.20 Fire-Generated Environmental Conditions

$$\rho Y_{i} = \frac{\left(\frac{Q_{f}}{V}\right)}{\left(\frac{\Delta H_{c}}{f_{i}}\right)}$$

where

 ρY_i = mass concentration of species *i* (kg_i/m³)

 $(Q_{\rm f}/V)$ = fire heat-release per unit volume of the control volume (kJ/m³)

 $\left(\Delta H_{\rm c}/f_{\rm i}\right)$ = species heat of combustion (kJ/kg_i)

$$\Delta T_{\rm g,lim} = \frac{\Delta H_{\rm c}}{r_{\rm air}} \frac{\chi_{\rm O_2,lim} (1-\chi_1)}{c_{\rm p}}$$

where

 $\Delta T_{g,lim}$ = upper gas temperature rise above ambient (K)

 ΔH_c = fuel heat of combustion (kJ/kg)

 $\chi_{O_{2},lim}$ = fraction of oxygen that can be consumed before extinction (dimensionless)

 χ_1 = heat loss factor (dimensionless)

 $r_{\rm air}$ = air stoichiometric ratio (kg air/kg fuel)

 $c_{\rm p}$ = specific heat at constant pressure (kJ/kg-K)

$$K = K_m \rho Y_{\text{soot}}$$

where

 K_m = specific light-extinction coefficient (m²/kg)

Suggested: 7,600 m²/kg for flaming combustion; 4,400 m²/kg for smoke produced by pyrolysis; and 8,700 m²/kg for flaming combustion of wood and plastic fuels

 ρY_{soot} = soot mass concentration (kg_{soot}/m³)

 $K = \text{light-extinction coefficient } (\text{m}^{-1})$

$$\frac{I}{I_0} = e^{-KL}$$

where

 $\frac{I}{I_0}$ = light attenuation

I =intensity of incident light (cd)

 I_0 = intensity of light through smoke (cd)

K =light-extinction coefficient (m⁻¹)

L = light path length (m)

$$S = \frac{C}{K}$$

where

- S = visibility distance (m)
- C = nondimensional constant associated with the object being viewed through smoke (dimensionless) Suggested: 8 for light-emitting signs; 3 for light-reflecting signs
- K =light-extinction coefficient (m⁻¹)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

4 WATER-BASED EXTINGUISHING SYSTEMS

4.1 Fluid Mechanics

4.1.1 Density, Specific Volume, Specific Weight, and Specific Gravity

The definitions of density, specific weight, and specific gravity follow:

$$\rho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V}$$

$$\gamma = \lim_{\Delta V \to 0} \frac{\Delta W}{\Delta V}$$

$$\gamma = \lim_{\Delta V \to 0} \frac{g \cdot \Delta m}{\Delta V} = \rho g$$

Also $SG = \frac{\gamma}{\gamma_{w}} = \frac{\rho}{\rho_{w}}$

where

- ρ = density (also called mass density)
- $\Delta m = \text{mass of infinitesimal volume}$
- ΔV = volume of infinitesimal object considered
- γ = specific weight = ρg
- ΔW = weight of an infinitesimal volume
- SG = specific gravity
- $\rho_{\rm w}~$ = density of water at standard conditions = 1,000 kg/m^3 (62.4 lbm/ft^3)
- $\gamma_{\rm w}~=\text{specific weight of water at standard conditions}=9,810~\text{N/m}^3~(62.4~\text{lbf/ft}^3)=9,810~\text{kg/m}^2 \bullet \text{s}^2$

4.1.2 Characteristic of a Static Liquid

The Pressure Field in a Static Liquid

Bober, W., and R.A. Kenyon, Fluid Mechanics, Wiley, 1980. .

The difference in pressure between two different points is

 $P_2 - P_1 = -\gamma (z_2 - z_1) = -\gamma h = -\rho gh$

Absolute pressure = atmospheric pressure + gauge pressure reading

Absolute pressure = atmospheric pressure - vacuum-gauge pressure reading

4.1.3 Principles of One-Dimensional Fluid Flow

Continuity Equation

As long as the flow Q is continuous, the *continuity equation*, as applied to one-dimensional flows, states that the flow passing two points (1 and 2) in a stream is equal at each point, $A_1v_1 = A_2v_2$.

Q = Av $\dot{m} = \rho Q = \rho Av$

where

Q = volumetric flow rate

 \dot{m} = mass flow rate

- A =cross-sectional area of flow
- v = average flow velocity
- ρ = fluid density

For steady, one-dimensional flow, \dot{m} is a constant. If, in addition, the density is constant, then Q is constant.

Bernoulli Equation

The field equation is derived when the energy equation is applied to one-dimensional flows. Assuming no friction losses and that no pump or turbine exists between sections 1 and 2 in the system:

$$\frac{P_2}{\gamma} + \frac{v_2^2}{2g} + z_2 = \frac{P_1}{\gamma} + \frac{v_1^2}{2g} + z_1$$

or

$$\frac{P_2}{\rho} + \frac{v_2^2}{2} + z_2 g = \frac{P_1}{\rho} + \frac{v_1^2}{2} + z_1 g$$

where

 P_1, P_2 = pressure at sections 1 and 2

- v_1, v_2 = average velocity of the fluid at the sections
- z_1, z_2 = vertical distance from a datum to the sections (the potential energy)
 - γ = specific weight of the fluid (ρg)
 - g =acceleration of gravity
 - ρ = fluid density

Conservation Equation

$$p_T = p + \frac{\rho V^2}{2} + \rho g Z$$

where

 $p_{\rm T}$ = total pressure (psi)

p = normal pressure (psi)

 ρ = fluid density (lb/ft³)

V = fluid velocity (ft/sec)

- $g = \text{gravitational constant} (32.2 \text{ ft/s}^2)$
- Z = vertical distance from an arbitrary elevation

Hydraulic Gradient (Grade Line)

Hydraulic grade line is the line connecting the sum of pressure and elevation heads at different points in conveyance systems. If piezometers were placed at intervals along the pipe, the grade line would join the water levels in the piezometer water columns.

Energy Line (Bernoulli Equation)

The Bernoulli equation states that the sum of the pressure, velocity, and elevation heads is constant. The energy line is this sum or the "total head line" above a horizontal datum. The difference between the hydraulic grade line and the energy line is the $v^2/2g$ term.

4.1.4 Fluid Flow Characterization

Reynolds Number

$$Re = \frac{vD\rho}{\mu} = \frac{vD}{\nu}$$
$$Re' = \frac{v^{(2-n)}D^n\rho}{K\left(\frac{3n+1}{4n}\right)^n 8^{(n-1)}}$$

where

- v = fluid velocity (m/s)
- $\rho = mass density (kg/m^3)$
- D = diameter of the pipe, dimension of the fluid streamline, or characteristic length (m)
- μ = dynamic viscosity (kg/m•s)
- ν = kinematic viscosity (m²/s)
- *Re* = Reynolds number (Newtonian fluid)
- Re' = Reynolds number (Power law fluid)
 - K =consistency index (dimensionless)
 - n =power law index (dimensionless)

The critical Reynolds number, Re_c, is defined to be the minimum Reynolds number at which a flow will turn turbulent.

Flow through a pipe is generally characterized as laminar for Re < 2,100, fully turbulent for Re > 10,000, and transitional flow for 2,100 < Re < 10,000.

The velocity distribution for laminar flow in circular tubes or between planes is

$$v(r) = v_{\max} \left[1 - \left(\frac{r}{R}\right)^2 \right]$$

where

r = distance from the centerline (m)

R = radius of the tube or half the distance between the parallel planes (m)

v = local velocity at r (m/s)

 v_{max} = velocity at the centerline of the duct (m/s)

 $v_{\text{max}} = 1.18 \overline{v}$, for fully turbulent flow

- $v_{\text{max}} = 2\overline{v}$, for circular tubes in laminar flow
- $v_{\text{max}} = 1.5 \overline{v}$, for parallel planes in laminar flow

where \overline{v} = average velocity in the duct (m/s)

The shear stress distribution is

$$\frac{\tau}{\tau_w} = \frac{r}{R}$$

where τ and τ_w are the shear stresses at radii *r* and *R*, respectively

4.1.5 Consequences of Fluid Flow

Drag Force

The drag force $F_{\rm D}$ on objects immersed in a large body of flowing fluid or objects moving through a stagnant fluid is

$$F_{\rm D} = \frac{C_{\rm D} \rho v^2 A}{2}$$

- $C_{\rm D}$ = drag coefficient
 - v = velocity of the flowing fluid or moving object (m/s)
- A = projected area of blunt objects such as spheres, ellipsoids, disks, and plates, cylinders, ellipses, and air foils with axes perpendicular to the flow (m²)
- ρ = fluid density (kg/m³)

For flat plates placed parallel with the flow:

$$C_D = \frac{1.33}{Re^{0.5}} \qquad (10^4 < Re < 5 \times 10^5)$$
$$C_D = \frac{0.031}{Re^{1/7}} \qquad (10^6 < Re < 10^9)$$

The characteristic length in the Reynolds number (Re) is the length of the plate parallel with the flow. For blunt objects, the characteristic length is the largest linear dimension (diameter of cylinder, sphere, disk, etc.) that is perpendicular to the flow.

4.2 General Water Flow

Orifice discharging freely into the atmosphere:

Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954.

$$Q = CA_0 \sqrt{2gh}$$

in which h is measured from liquid surface to centroid of orifice opening

where

- Q = volumetric flow (gpm)
- $A_0 =$ cross-sectional area of flow (ft²)
- $g = \text{acceleration of gravity (ft/sec}^2)$
- h = height of fluid above orifice (ft)

4.2.1 Multipath Pipeline Problems

Vennard, J.K., Elementary Fluid Mechanics, 6th ed., J.K. Vennard, 1954.

$$h_{\rm L} = f_{\rm A} \frac{L_{\rm A}}{D_{\rm A}} \frac{v_{\rm A}^2}{2g} = f_{\rm B} \frac{L_{\rm B}}{D_{\rm B}} \frac{v_{\rm B}^2}{2g}$$
$$\left(\frac{\pi D^2}{4}\right) v = \left(\frac{\pi D_{\rm A}^2}{4}\right) v_{\rm A} + \left(\frac{\pi D_{\rm B}^2}{4}\right) v_{\rm B}$$

4.2.2 Pitot Tube

From the stagnation pressure equation for an incompressible fluid,

$$v = \sqrt{\left(\frac{2}{p}\right)\left(P_0 - P_{\rm S}\right)} = \sqrt{\frac{2g(P_0 - P_{\rm S})}{\gamma}}$$

where

v = velocity of the fluid (ft/sec)

 P_0 = stagnation pressure (psi)

 $P_{\rm S}$ = static pressure of the fluid at the elevation where the measurement is taken (psi)

Vennard, J.K., *Elementary Fluid Mechanics*, 6th ed., J.K. Vennard, 1954.

For a compressible fluid, use the above incompressible fluid equation if the Mach number ≤ 0.3 .

4.3 Fire Hydrants

4.3.1 Hydrant Flow Test

$$Q_2 = Q_1 \frac{(S - R_2)^{0.54}}{(S - R_1)^{0.54}}$$

where

Q =flow (gpm)

- S =static pressure (psi)
- R = residual pressure (psi): R_1 = test residual; R_2 = desired residual

$$Q = 29.84 cd^2 \sqrt{\text{pitot}}$$

where

c = constant based upon hydrant outlet (0.9, 0.8, 0.7)

d = diameter of opening (in.)

pitot = velocity pressure of water exiting hydrant (psi)

NFPA Standard 291, *Recommended Practice for Fire Flow Testing and Marking of Hydrants*, Section 4.10.1.2. Reproduced with permission of NFPA[®], which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.

Pressure available at water supply (P):

$$P = \left(P_{\rm R} - P_{\rm S}\right) \left(\frac{Q}{Q_{\rm R}}\right)^{1.85} + P_{\rm S}$$

where

 $P_{\rm S}$ = static pressure from test (psi)

 $P_{\rm R}$ = res. pressure from test (psi)

Q = flow at which you want to know pressure (gpm)

 $Q_{\rm R}$ = flow at $P_{\rm R}$ (gpm)
4.4 Fire Sprinkler Systems

The area of sprinkler coverage is taken as twice the maximum coverage in one direction times twice the maximum coverage in the other direction.

The area of coverage for each sprinkler is determined by the following steps:

- 1. Consider the distance to the next sprinkler or twice the distance to the wall in one direction. Whichever is greater is given the dimension S.
- 2. Consider the distance to the next sprinkler or twice the distance to the wall in the perpendicular direction to step 1. Whichever distance is greater is given the dimension L.
- 3. The area of coverage for a sprinkler is determined by multiplying $S \times L$.

4.4.1 Sprinkler Flow Using Sprinkler K-Factor

 $Q = k\sqrt{p}$

where

- k = nominal orifice coefficient with different k-factors available in traditional U.S. and Metric units
- Q = system flow (gpm or Lpm)
- p = system pressure (psi or bar)

4.4.2 Sprinkler Flow Normal Pressure

 $P_{\rm n} = P_{\rm t} - P_{\rm v}$

where

- $P_{\rm n}$ = normal pressure (psi)
- $P_{\rm t}$ = total pressure (psi)
- $P_{\rm v}$ = velocity pressure (psi)

4.4.3 Sprinkler Flow Velocity Pressure

$$P_{\rm v} = \frac{0.001123Q^2}{d^4}$$

where

 $P_{\rm v}$ = velocity pressure (psi)

Q = flow prior to orifice (gpm)

d = inside diameter of pipe prior to orifice (in.)

4.4.4 Dry Pipe Valve Trip Time

Time to trip a dry pipe sprinkler system, per FM Global Research:

$$t = 0.0352 \frac{V_{\rm T}}{A_{\rm n} T_0^{1/2}} \ln\left(\frac{p_{\rm a0}}{p_{\rm a}}\right)$$

where

t = time (sec)

- $V_{\rm T}$ = dry volume of sprinkler system (ft³)
- T_0 = air temperature (°R)
- A_n = flow area of open sprinklers (ft²)
- p_{a0} = initial air pressure (absolute)
- $p_{\rm a}$ = trip pressure (absolute)

4.5 Hydraulic Calculations

4.5.1 Pressure Due to Elevation

P = 0.433H

where

P = pressure (psi)

H = height (ft)

4.5.2 Hazen-Williams Pressure Loss

US Customary Units

$$p = \frac{4.52Q^{1.85}}{C^{1.85}d_i^{4.87}}$$

where

p = pressure loss per foot of pipe (psi/ft)

Q =flow rate (gpm)

C = pipe roughness coefficient

 d_i = internal pipe diameter (in.)

SI Units

$$P = \frac{6.05Q^{1.85}}{C^{1.85}D^{4.87}} \times 10^5$$

where

P = pressure loss per meter of pipe (bars)

Q =flow (L/min)

D = pipe diameter (mm)

Pipe Material	С
Asbestos – Cement	140
Brick Sewers	100
Cast Iron (Lined)	140
Cast iron (Unlined)—new	130
Cast iron (Unlined)—5 yr old	120
Cast iron (Unlined)—20 yr old	100
Concrete	130
Copper	150
Ductile Iron (Lined)	140
Ductile Iron (Unlined)	100
Plastic	150
Steel—galvanized or black—dry pipe system with air in piping	100
Steel—galvanized or black—dry pipe system with nitrogen in piping	120
Steel—galvanized or black—deluge system	120
Steel—galvanized or black—preaction system with air in piping	100
Steel—galvanized or black—preaction system with nitrogen in piping	120
Steel—galvanized or black—wet-pipe system	120
Steel—riveted	110
Wood stave	120

Values of Hazen-Williams Coefficient C for Underground Pipe

Note: Other values for above-ground piping are available within the provided reference standards.

4.5.3 Pipe Schedule Correction Factor

Correction factor =
$$\left(\frac{d_{\text{actual}}}{d_{\text{sched40}}}\right)^{4.8'}$$

where

 d_{actual} = pipe diameter for schedule pipe being used (in.)

 d_{sched40} = pipe diameter for schedule 40 pipe (in.)

4.5.4 Darcy-Weisbach Friction Loss

$$h_{\rm L} = f \frac{Lv^2}{2Dg}$$

where

 $h_{\rm L}$ = friction loss over a length of pipe (ft)

f = friction factor

- L =length of pipe (ft)
- v = fluid velocity (ft/sec)
- D = pipe diameter (ft)

 $g = \text{gravitational constant (ft/sec^2)}$

For laminar flow (Re < 2,000):

$$f = \frac{64}{Re}$$
 or Moody Diagram

where Re = Reynolds number

or

For hydraulically smooth or turbulent smooth flow:

$$\frac{1}{\sqrt{f}} = -0.86 \ln\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)^{-2}$$
$$f = \left[1.14 - 2\log\left(\frac{\varepsilon}{D} + \frac{9.35}{\operatorname{Re}\sqrt{f}}\right)\right]^{-2}$$

A chart that gives f versus Re for various values of $\frac{\varepsilon}{D}$, known as the Moody diagram, is available in this section.

	ε in ft ×	10-6	Probable maximum variation		
Type of pipe or tubing	Range	Design	of f from design (%)		
New clean pipe		`			
Asphalted cast iron	400	400	-5 to +5		
Brass and copper	5	5	-5 to +5		
Concrete	1,000-10,000	4,000	-35 to +50		
Cast iron	850	850	-10 to +15		
Galvanized iron	500	500	0 to +10		
Wrought iron	150	150	-5 to +10		
Steel	150	150	-5 to +10		
Riveted steel	3,000–30,000	6,000	-25 to +75		
Wood stave	600–3,000	2,000	-35 to +20		
Aged pipe					
Steel, dry system		1,250			
Steel, wet system		333			
Plastic		7			
Copper		7			

Values of Absolute Roughness of Commercial Pipes

Notes:

For ϵ values in meters, multiply the above numbers by 0.3048. For ϵ values in inches, multiply the above numbers by 12.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

$$Re = \frac{D_e v \rho}{\mu}$$

where

 $D_{\rm e}$ = equivalent flow diameter

 $\rho = density$

 μ = absolute (dynamic) viscosity

$$D_{\rm e} = 4r_{\rm h}$$

where $r_{\rm h}$ = hydraulic radius (area in flow divided by the wetted perimeter)

For fluids:

$$h = \frac{0.000216 f \rho Q^2}{D^5}$$

where

h = friction loss over a unit length of pipe

Q =flow rate

For water at 68°F:

$$h = \frac{0.0135 f l Q^2}{D^5}$$

where l =length of pipe

Alternate terms:

$$\Delta P = 0.000216f \frac{l\rho Q^2}{d^5} \qquad Re = 50.6 \frac{Q\rho}{d\mu}$$

where

$$\Delta P = \text{friction loss (psi)}$$

$$Q = \text{flow (gpm)}$$

$$d = \text{internal diameter of the pipe (in.)}$$

$$\mu = \text{viscosity (cP)}$$

4.5.5 Piping Loops

$$A = \sum_{i=1}^{x} \left[\frac{L_i}{c_i^{1.85} d_i^{4.87}} \right] \text{ for Leg 1 of the loop}$$
$$B = \sum_{j=1}^{y} \left[\frac{L_j}{c_j^{1.85} d_j^{4.87}} \right] \text{ for Leg 2 of the loop}$$
$$Q_1 = Q_3 \left[\frac{B^{0.54}}{(A^{0.54} + B^{0.54})} \right]$$
$$Q_2 = Q_3 - Q_1$$

where

L =length of pipe (ft)

d = pipe diameter (in.)

$$c = pipe C$$
-factor

$$Q = pipe flow (gpm)$$

Equivalent pipe:

Series:
$$FLC_e = FLC_1 + FLC_2 + FLC_3 + \dots$$

Parallel: $\left(\frac{1}{FLC_e}\right)^{0.54} = \left(\frac{1}{FLC_1}\right)^{0.54} + \left(\frac{1}{FLC_2}\right)^{0.54} + \left(\frac{1}{FLC_3}\right)^{0.54} + \dots$
 $FLC_e = \frac{4.52L_e}{C_e^{1.85}D_e^{4.87}}$

where

 $L_{\rm e}$ = equivalent length of pipe (ft)

 $D_{\rm e}$ = equivalent pipe diameter (in.)

 $C_{\rm e}$ = equivalent pipe C-factor

 FLC_e = equivalent pipe flow (gpm)

4.5.6 Moody, Darcy, or Stanton Friction Factor Diagram

Flow in Closed Conduits * The Fanning Friction is this factor divided by 4

73

4.5.7 Relative Roughness Chart

Source: SFPE *Handbook of Fire Protection Engineering*, fifth edition, with permission from SFPE.

4.6 Water Hammer

Water hammer in a pipeline is caused by a sudden stoppage of flow and is characterized by loud noise and vibration. The formula expressing the relationship between pressure and volume for water hammer is

$$\Delta p = -E \frac{\Delta V}{V_0}$$

where

 Δp = change in pressure (psi)

E = bulk modulus of elasticity

 ΔV = change in volume

 V_0 = initial volume

Pressure shocks in fluids of infinite extent travel at a velocity given by

$$c^* = \sqrt{\frac{KE}{\rho}}$$

where

 c^* = celerity (velocity) of the shock wave

KE = kinetic energy of the fluid

 ρ = fluid density

For a system composed of fluid and pipe:

$$\frac{1}{E_{\rm c}} = \frac{1}{E} + \frac{D}{E_{\rm p}w}$$

where

 $E_{\rm c}$ = modulus of elasticity of a system composed of fluid and pipe

 $E_{\rm p}$ = modulus of elasticity of the pipe material

D = pipe diameter

w = thickness of pipe wall

Dina Matarial	E _p					
r ipe wrater iai	psi	lb/ft ²	kg/m ²			
Lead	0.045×10^{6}	6.48×10^{6}	31.64×10^{6}			
Lucite (at 73°F)	$0.4 imes 10^{6}$	57.6×10^{6}	281.23×10^{6}			
Rubber (vulcanized)	2×10^{6}	288×10^{6}	$1,406 \times 10^{6}$			
Aluminum	$10 imes 10^6$	$1,440 \times 10^{6}$	$7,030 \times 10^{6}$			
Glass (silica)	$10 imes 10^6$	$1,440 \times 10^{6}$	$7,030 \times 10^{6}$			
Brass, bronze	13×10^{6}	$1,872 \times 10^{6}$	$8,\!489 \times 10^{6}$			
Copper	$14 imes 10^6$	2.016×10^{6}	$9,842 \times 10^{6}$			
Cast iron, gray	$16 imes 10^6$	$2,304 \times 10^{6}$	$11,249 \times 10^{6}$			
Cast iron, malleable	$23 imes 10^6$	$3,312 \times 10^{6}$	$16,170 \times 10^{6}$			
Steel	$28 imes 10^6$	$4,023 \times 10^{6}$	$19,685 \times 10^{6}$			

Modulus of Elasticity E_{p} of Various Pipe Materials

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Shock wave in a pipe system of finite extent:

$$\frac{c}{c^*} = \frac{1}{\sqrt{1 + \frac{ED}{E_P w}}}$$

Time for a shock to be absorbed into a larger energy field:

$$t = \frac{L}{c}$$

where

L = distance from the energy reservoir to shock-wave point of origin

t = time

t, L, and c can be any set of consistent units. For example, if c is in m/s, then L would be m and t would be s.

Time period that the initial shock acts on a valve:

$$T = 2t = \frac{2L}{c}$$

Theoretical magnitude of the pressure shock at instantaneous valve closure:

$$p^* = \rho c \Delta v$$

The pressure will oscillate in the pipe within the range $p = p_0 \pm p^*$.

4.7 Pressures

4.7.1 Velocity Head

$$h_{\rm V} = \frac{Q^2}{891d^4}$$

where

 $h_{\rm v}$ = velocity head (psi)

Q =flow rate (gpm)

d = pipe inside diameter (in.)

4.7.2 Net Positive Suction Head (NPSH)

 $NPSH_A = P_{atm} + P_{static} - f - P_{vapor}$

where

 $NPSH_A$ = net positive suction head available (psi)

 $P_{\rm atm}$ = atmospheric pressure (psi)

 P_{static} = pressure tank pressure – elevation pressure (psi)

f = friction loss in line (psi)

 P_{vapor} = vapor pressure (psig) adjusted for temperature and altitude (0.256 psia represents water at 20°C)

4.8 Fire Pumps

4.8.1 Pump Affinity Laws

Law 1 – Constant Diameter

$$\frac{Q_1}{Q_2} = \frac{N_1}{N_2} \qquad \frac{H_1}{H_2} = \frac{N_1^2}{N_2^2} \qquad \frac{P_1}{P_2} = \frac{N_1^3}{N_2^3}$$

Law 2 – Constant Speed

$$\frac{Q_1}{Q_2} = \frac{D_1}{D_2} \qquad \frac{H_1}{H_2} = \frac{D_1^2}{D_2^2} \qquad \frac{P_1}{P_2} = \frac{D_1^3}{D_2^3}$$

where

Q = volumetric flow rate (gpm or L/min)

N =rotational speed (rpm)

H = developed head (ft, psi, or m)

P = power(hp or kW)

D =impeller diameter (in., cm, or mm)

4.8.2 Fire Pump Total Head

$$H = h_{\rm d} + h_{\rm Vd} - h_{\rm s} - h_{\rm Vs}$$

where

H = total head (ft) $h_{d} = \text{discharge head (ft)}$ $h_{Vd} = \text{discharge velocity head (ft)}$ $= \frac{V_{d}^{2}}{2g}$ V = velocity discharge or suction velocity (ft/sec) $= \frac{Q}{A} = \text{gpm} \times \frac{1\text{ft}^{3}}{7.48 \text{ gal}} \times \frac{1 \text{min}}{60 \text{ s}} \times \frac{1}{A}$

- g = acceleration due to gravity (32.2 ft/sec²)
- $h_{\rm s}$ = suction head (ft)
- $h_{\rm Vs}$ = suction velocity head (ft) = $\frac{V_{\rm s}^2}{2g}$

4.8.3 Pump Power Equation

$$\dot{W} = \frac{Q\gamma h}{\eta_{t}} = \frac{Q\rho gh}{\eta_{t}}$$

where

- \dot{W} = power (ft-lbf/sec or kg•m²/s³)
- Q = volumetric flow (cfs or m³/s)
- h = head the fluid has to be lifted (ft or m)
- $\eta_t \ = total \ efficiency \ (\eta_{pump} \times \eta_{motor})$

4.8.4 Water Horsepower

WHP =
$$\frac{Qh}{3,960}$$

where

WHP = water horsepower

$$Q =$$
flow (gpm)

h = total dynamic head (ft)

using the specific weight, γ , for water at 68°F (20°C)

4.8.5 Pump Brake Horsepower

$$H = \frac{P \times 600 \times E}{Q}$$

where

- P = brake horsepower (kW)
- Q = pump discharge (L/min)
- H = pump discharge head (bar)
- E = combined efficiency of the motor and gear drives $(\eta_d \times \eta_m)$

$$bhp = \frac{QP}{1,710E}$$

where

bhp = brake horsepower

hp = hydraulic horsepower = QP/1,710

Q =flow (gpm)

 $P = \text{total pressure (psi)} = \text{total head} \times 0.433$

E = pump efficiency (decimal); usually 60 to 75%

Deratings for altitude and temperature:

Altitude: 3% for every 1,000 ft above 300 ft

Temperature: 1% for every 10°F above 77°F

4.8.6 Diesel Fuel Tank Capacity

When a diesel fuel tank is needed to support the fire pump, the tank must be able to accommodate 1 gal/bhp plus 5% for expansion and 5% for sump.

4.9 Water-Mist Fire Suppression Systems

Water-mist fire protection systems refer to water sprays with no drops larger than 1.0 mm, or 1,000 µm (micrometers or microns). Extinguishing mechanisms apply to extinguishment of Class B liquid-fuel fires as well as Class A solid fuels. Water-mist systems can control or extinguish a fire by reducing the oxygen concentration below the limiting oxygen concentration (LOC), wetting/cooling the fuel surface, or reducing radiant-heat flux through radiation attenuation.

Water-mist systems can be categorized based on several distinguishing factors. From a systems engineering perspective, the four most important are

- 1. Mode of application of the mist
- 2. Method of spray generation
- 3. Pressure regime
- 4. Means of providing the necessary system flow and pressure

There are several subcategories of systems, each with its own specific technical features, such as single-fluid and twin-fluid systems, and constant-pressure versus decaying-pressure discharges. The mode of application refers to how the system is intended to develop and deploy the mist within a given space or environment and includes total compartment application (TCA), local application (LA), and zoned application (ZA) systems.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

4.9.1 Water-Mist System Definitions

Engineered Water-Mist System

This system is designed in the same manner as a traditional sprinkler or water-spray system, based on criteria in the manufacturer's design installation, operation, and maintenance manual. The designer applies these guidelines and performs necessary calculations, such as hydraulic calculations, for the system.

High-Pressure System

This system operates at pressures above 500 psi (34.5 bar).

Intermediate-Pressure System

This system operates at pressures between 175 psi (12.1 bar) and 500 psi (34.5 bar).

Low-Pressure System

This system operates at pressures below 175 psi (12.1 bar).

NanoMist System

This system has an ultrafine mist with very uniform drop size distribution with a volumetric mean droplet diameter in the $10 \ \mu m$ range.

Pre-engineered Water Mist System

This system has been developed for a hazard of a limited size and consistent features defining the compartment. It is installed per the manufacturer specifications and does not require engineering calculations.

Single-Fluid Nozzles

These nozzles discharge water only.

Twin-Fluid Nozzles

These nozzles combine two independent streams of fluid, one of water and one of compressed gas, at a nozzle to generate finely atomized spray.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

4.9.1.1 Spray Heat Absorption Ratio (SHAR)

SHAR =
$$\frac{Q_{\rm w}}{Q_{\rm f}}$$

where

 $Q_{\rm w}$ = evaporation of a given mass of water (kW)

 $Q_{\rm f}$ = heat given off by the fire (kW)

4.9.1.2 Required Extinguishing Medium Portion (REMP)

$$\text{REMP} = \frac{m'_{\text{e}}}{m'_{\text{g}}}$$

where

 $m'_{\rm e}$ = mass application rate of extinguishing agent required (kg/s)

 $m'_{\rm g}$ = mass rate of fuel consumed (kg/s)

4.9.1.3 Spray Characteristics

To fully characterize a spray requires information about the following elements:

- Drop size distribution (DSD)
- Cone angle
- Velocity of the discharge jet(s)
- Mass flow rate
- Spray momentum (product of velocity and mass)

4.10 Pipe Diameters

4.10.1 Ductile Iron

Ductile Iron Pipe Inner Diameters (I.D.)						
Size	Class	Nominal Thickness (in.)	Unlined Pipe I.D. (in.)	Cement-Lined I.D. (in.)		
6"	350	0.25	6.40	6.28		
8"	350	0.25	8.55	8.43		
10"	350	0.26	10.58	10.46		
12"	350	0.28	12.64	12.52		
	250	0.28	14.74	14.55		
14"	300	0.30	14.70	14.51		
	350	0.31	14.68	14.49		
	250	0.30	16.80	16.61		
16"	300	0.32	16.76	16.57		
	350	0.34	16.72	16.53		
	250	0.31	18.88	18.69		
18"	300	0.34	18.82	18.63		
	350	0.36	18.78	18.59		

4.10.2 Steel Pipe—Common Schedules

	Nominal Pipe Size	1"	1 1/4"	1 1/2"	2''	2 1/2"	3"	4"	6"	8''
	I.D. (in.)	1.097	1.442	1.682	2.157	2.635	3.260	4.260	6.357	8.249
Schedule 10	Water- Filled Weight (lbf/ft)	1.800	2.518	3.053	4.223	5.893	7.957	11.796	23.038	40.086
	I.D. (in.)	1.049	1.380	1.610	2.067	2.469	3.068	4.026		
Schedule 40	Water- Filled Weight (lbf/ft)	2.055	2.918	3.602	5.114	7.875	10.783	16.316		

5 SPECIAL HAZARD EXTINGUISHING SYSTEMS

5.1 Foam Agents

Test Average Effective Absorptivity for AFFF at Different Expansion Ratios

Expansion Ratio (ER)	Effective Absorptivity, α Foam
3	0.34 ± 0.09
6	0.42 ± 0.06
10	0.41 ± 0.04

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE

Hydrocarbon Liquid	Grade	Surface Tension at 25°C (dyn/cm)
Cyclohexane	Certified A.C.S.	24.2
<i>n</i> -Heptane	Certified spectroanalyzed	19.8
<i>n</i> -Heptane	Commercial	20.9
Isooctane	Certified A.C.S.	18.3
Avgas	115/145	19.4 ^a 19.5 ^b
JP-4	Navy specification	22.4 ^a 22.8 ^b
JP-5	Navy specification	25.6ª 25.8 ^b
Motor fuel	Regular	20.5 ^a 21.5 ^b
Naphtha	Stove and lighting	20.6

Surface Tension of Hydrocarbon Liquids and Fuels

^a Sample 1 ^b Sample 2

Surfactant Solution	Hydrocarbon Liquid	Interfacial Tension (dyn/cm)	Spreading Coefficient (dyn/cm)	Film Formed
FC-194 (lot 107) (solution surface	Cyclohexane	4.3	4.4	Yes
tension of 15.5 dyn/cm at 25°C)	<i>n</i> -Heptane, certified	5.5	-1.2	No
	<i>n</i> -Heptane, commercial	4.3	1.1	Yes (very slow spread)
	Avgas ^a	4.6	-0.7	No
	JP-4 ^a	3.6	3.3	Yes
	JP-5 ^a	4.9	5.2	Yes
	Motor fuel ^a	3.7	1.3	Yes
FC-195 (lot 9) (solution surface	Cyclohexane	3.2	5.4	Yes
tension of 15.6 dyn/cm at 25°C)	<i>n</i> -Heptane, certified	4.2	0.0	Yes (slow spread)
	Isooctane	2.5	0.2	Yes (slow spread)
	Avgas ^a	0.5	3.3	Yes
	JP-4 ^b	3.6	3.6	Yes
	JP-5 ^b	4.9	5.3	Yes
	Motor fuel ^a	2.6	2.3	Yes
	Naphtha	2.8	2.2	Yes
FC-195 (lot 10) (solution surface	Cyclohexane	1.5	6.3	Yes
tension of 16.4 dyn/cm at 25°C)	<i>n</i> -Heptane, certified	3.2	0.6	Yes
	Isooctane	2.8	-1.3	No
	Avgas ^a	2.1	1.0	Yes
	JP-4 ^a	2.7	3.3	Yes
	JP-5 ^a	4.2	5.0	Yes
	Motor fuel ^a	1.2	2.9	Yes
	Naphtha	0.8	3.4	Yes (slow spread)

Interfacial Tensions, Spreading Coefficients, and Film Formation Observations for Various Surfactant Solution-Hydrocarbon Liquid Combinations

^a Sample 1 ^b Sample 2

Design/Hydraulic Step Function	Low-Expansion Foam System—Top Chamber	High-Expansion Foam System—Top Generator
Starting point	Foam chamber(s)	Foam generator(s)
Second determination	Foam solution requirement per chamber (gpm)	Expanded foam requirement per chamber (cfm)
Third determination	Foam solution delivery rate between foam maker and foam house	Same determination
Fourth determination	Size pipe from foam maker(s) to foam house	Size pipe from foam generator(s) to foam house
Fifth determination	Determine type and size of foam proportioner	Same determination
Sixth determination	Determine hydraulic requirements in foam house	Same determination
Seventh determination	Evaluate water supply/demand requirement at foam house	Same determination
Eighth determination	Assess requirement for pump in foam house; re- calculate hydraulic requirements in foam house	Same requirement

Comparison of Design Criteria for Low-Expansion and High-Expansion Foam Systems

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

5.2 Low-Expansion Foam Systems

 $Q = D \times T \times \% + HoseStream$

where

Q = primary foam concentrate (gal) (system + hose)

D = foam discharge rate (gpm)

T = discharge time (min)

% = concentrate percent of foam (decimal)

5.2.1 Foam Discharge Rate

 $D = A \times R$

where

D = foam discharge rate (gpm)

 $A = \text{surface area (ft}^2)$

For tanks = $0.785d^2$

$$d = \text{diameter} (\text{ft})$$

 $R = \text{rate of application (gpm/ft^2)}$

5.3 High-Expansion Foam Systems

$$R = \left(\frac{V}{T} + R_{\rm S}\right)C_{\rm N} \times C_{\rm L}$$

where

R =rate of discharge (cfm)

V = submergence volume (ft³)

(volume of combustible + 10% or 2 ft, whichever is greater)

 $C_{\rm N} = 1.15$ (dimensionless)

 $C_{\rm L}$ = foam leakage coefficient (between 1.0 and 1.2) (dimensionless)

$$R_{\rm S} = S \times Q$$

where

S =sprinkler breakdown rate (10 cfm/gpm)

Q = estimated sprinkler discharge (gpm)

5.4 Carbon Dioxide (CO₂) Systems

Reference Properties of Carbon Dioxide

Chemical name	Carbon dioxide
Synonyms	Carbon anhydride, carbonic acid gas, car- bonic anhydride, dry ice
CAS Registry No. ^a	124-38-9
Chemical formula	CO ₂
Property	S.I. units
Molecular weight	44.01 g/mol
Vapor pressure at 2°F (-16.7 °C)	2,181.4 kPa
Specific gravity of gas at 70°F (21.1°C) and 1 atm	1.522
Solid to gas expansion ratio at 70°F (21.1°C) and 1 atm	0.5457 m ³ /kg
Gas density at 70°F (21.1°C) and 1 atm	1.833 kg/m ³
Density of solid (dry ice) at -109.3°F (-78.5°C)	1,563 kg/m ³
Sublimation temperature at 1 atm	-78.5°C
Critical temperature	31.1°C
Critical pressure	7,381.8 kPa
Critical density	468 kg/m ³
Triple point	-56.6°C at 518 kPa
Latent heat of vaporization at -16.7°C, 2.18 MPa	276.8 kJ/kg
Latent heat of fusion at 518 kPa, at -93.8°C	547 kJ/kg
Latent heat of sublimation at -78.5°C, 101.3 kPa	571.0 kJ/kg
Specific heat at constant pressure, C _p , gas at 25°C	0.850 kJ/kg•°C
Specific heat at constant volume, C _V , gas at 25°C	0.657 kJ/kg∙°C
Ratio of gas specific heats, C_p/C_V , at 15°C	1.304
Solubility in water at 20°C	0.90 vol/vol
Viscosity of saturated liquid at -16.7°C	0.000119 kg/m•s

^a CAS numbers are unique numerical identifiers assigned by the Chemical Abstracts Service to every chemical described in the open scientific literature.

Temp (K)	C _p , liquid (J/kg•K)	Thermal cond., liquid (W/m•K)	Viscosity, liquid (µPa•s)	C _v , vapor (J/kg•K)	Thermal cond., vapor (W/m•K)	Viscosity, vapor (µPa•s)
220	1,962	0.1762	242.0	639	0.01130	11.14
225	1,977	0.1697	222.2	654	0.01175	11.41
230	1,997	0.1633	204.2	670	0.01222	11.69
235	2,021	0.1570	187.9	687	0.01274	11.98
240	2,051	0.1508	173.0	705	0.01330	12.27
245	2,087	0.1446	159.3	725	0.01392	12.58
250	2,132	0.1385	146.7	746	0.01461	12.90
255	2,187	0.1324	135.1	769	0.01540	13.25
260	2,255	0.1264	124.4	794	0.01631	13.61
265	2,342	0.1203	114.4	822	0.01738	14.02
270	2,454	0.1143	105.0	852	0.01869	14.47
275	2,603	0.1082	96.2	885	0.02033	14.99
280	2,814	0.1020	87.7	923	0.02247	15.60
285	3,133	0.0958	79.5	969	0.02542	16.36
290	3,676	0.0895	71.4	1,026	0.02982	17.36
295	4,794	0.0836	62.9	1,106	0.03722	18.79
300	8,698	0.0806	53.1	1,248	0.05369	21.31

Carbon Dioxide Specific Heat, Thermal Conductivity, Viscosity

Material	Compatibility			
Metals				
Aluminium	Satisfactory			
Brass	Satisfactory			
Copper	Satisfactory			
Ferritic steels (e.g., carbon steels)	Satisfactory but risk of corrosion in presence of CO and/or moisture; cold brittleness			
Stainless steel	Satisfactory			
Plastics				
Polytetrafluoroethylene (PTFE)	Satisfactory			
Polychlorotrifluoroethylene (PCTFE)	Satisfactory			
Vinylidene polyfluoride (PVDF) (KYNAR TM)	Satisfactory			
Polyamide (PA) (NYLON TM)	Satisfactory			
Polypropylene (PP)	Satisfactory			
Elastomers				
Buthyl (isobutene - isoprene) rubber (IIR)	Not recommended, significant swelling			
Nitrile rubber (NBR)	Not recommended, significant swelling and significant loss of mass by extraction or chemical reaction			
Chloroprene (CR)	Not recommended, significant swelling and significant loss of mass by extraction or chemical reaction			
Chlorofluorocarbons (FKM) (VITON TM)	Not recommended, significant swelling and significant loss of mass by extraction or chemical reaction			
Silicon (Q)	Acceptable but strong rate of permeation			
Ethylene-propylene (EPDM)	Acceptable but important swelling and significant loss of mass by extraction or chemical reaction			
Lubricants				
Hydrocarbon-based lubricant	Satisfactory			
Fluorocarbon-based lubricant	Satisfactory			

Material Compatibility of Carbon Dioxide

CO ₂ Conc.	Source	U.S. EPA Examining the Risks (2004)	Air Products (2004)	Rice (2004)	
Vol. %	Exposure Time	Effects	Effects	Effects	
1			Slight increase in breathing rate.	Respiratory rate increased by about 37%.	
2	Several hours	Headache, dyspnea upon mild exertion	Breathing rate increases to 50% above normal level. Prolonged exposure can cause headache, tiredness.	Ventilation rate raised by about 100%. Respiratory rate raised by about 50%; increased brain blood flow.	
3	1 hr	Mild headache, sweating, and dyspnea at rest	Breathing increases to twice normal rate and becomes laboured. Weak narcotic effect. Impaired hearing, headache, in- crease in blood pressure and pulse rate.	Exercise tolerance reduced in workers when breathing against inspiratory and expiratory resistance.	
4–5	Within a few minutes	Headache, dizziness, increased blood pressure, uncomfortable dyspnea	Breathing increases to approximately four times normal rate; symptoms of intoxication become evident and slight choking may be felt.	Increase in ventilation rate by ~200%. Re- spiratory rate doubled, dizziness, headache, confusion, dyspnea.	
5–10	Within minutes		Characteristic sharp odor noticeable. Very labored breathing, headache, visual impairment, and ringing in the ears. Judgment may be impaired, followed within minutes by loss of consciousness.		
	1–2 min	Hearing and visual distur- bances			
6	< 16 min	Headache, dyspnea			
	Several hr	Tremors			
	Few minutes	Unconsciousness, near unconsciousness		At 8–10%, severe headache, dizziness,	
7–10	1.5 min to 1 hr	Headache, increased heart rate, shortness of breath, dizziness, sweating, rapid breathing		At 10%, unbearable dyspnea, followed by vomiting, disorientation, hypertension, and loss of consciousness.	
10-15	1 to several minutes	Dizziness, drowsiness, severe muscle twitching, unconsciousness			
17–30	< 1 min	Loss of controlled and purposeful activity, unconsciousness, convul- sions, coma, death			
50–100	< 1 min			Unconsciousness occurs more rapidly above 10% level. Prolonged exposure to high concentrations may eventually result in death from asphyxiation.	

Acute Health Effects of High Concentrations of Carbon Dioxide

Standard	Time-Weighted Average (8 hr day/40 hr week)	Short-Term Exposure Limit (15 min)	Immediately Dangerous to Life and Health
OSHA permissible exposure limit ^a	5,000 ppm (0.5%)		
NIOSH permissible exposure limit ^b	5,000 ppm (0.5%)	30,000 ppm (3%)	40,000 ppm (4%)
ACGIH permissible exposure limit ^c	5,000 ppm (0.5%)		

Permissible Exposure Limits—U.S. Standards

^a OSHA: US Occupation Safety and Health Administration (1986)

^b NIOSH: US National Institute of Occupational Safety and Health (1997)

^c ACGIH: American Conference of Governmental Industrial Hygienists

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

5.4.1 CO₂ Total Flooding

In a total flooding system, a specific design concentration of carbon dioxide is needed to promptly extinguish surface fires under anticipated conditions. As such, the quantity of carbon dioxide required to achieve concentration C in an enclosure can be calculated as follows:

$$m = \frac{V}{s} \ln\left(\frac{100}{100 - C}\right)$$

where

m =quantity of CO₂ (kg)

 $V = \text{enclosure volume (m}^3)$

s = specific volume of CO₂ vapor at the enclosure temperature (m³/kg)

 $C = CO_2$ concentration (vol %)

(Vol. %)
34
66
72
43
35
40
36

Minimum Extinguishing and Design Concentrations for Selected Flammable Liquids

MEC: minimum extinguishing concentration

DC: design concentration

* Calculated from accepted residual oxygen values

Protected Volume (V _p) (m ³)	Flooding Factor (kg/m ³)	Minimum Quantity (kg)
≤3.96	1.15	
3.97–14.15	1.07	4.5
14.16-45.28	1.01	15.1
45.29–127.35	0.9	45.4
127.35–1,415	0.8	113.5
>1,415	0.74	1,135

Flooding Factors vs. Hazard Volume

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Material Conversion Factor

The material conversion factor, MCF, is used to increase the base design quantity (m_{BD}) for design concentrations exceeding 34% carbon dioxide. The MCF is used to find the corrected design quantity (m_{cf}) of carbon dioxide.

$$m_{\rm BD} = V_{\rm p} \times FF$$
$$m_{\rm cf} = m_{\rm BD} \times MCF$$
$$MCF = 2.41 \ln\left(\frac{100}{1-C}\right)$$

where

 $m_{cf} = m_{BD} \times MCF$ V_p = protected volume (m³) FF = flooding factor (kg/m³) C = CO₂ concentration (vol%)

Unclosable Openings

In some cases, the enclosure surrounding the protected volume has openings that cannot be closed. The total quantity of carbon dioxide lost due to leakage from unclosable openings in a time period, *t*, can be found using the following equations, using SI and US units respectively:

$$m_{\rm lo} = 116A \sqrt{\rho_1 (\rho_1 - \rho_A) h t}$$

where

 m_{10} = quantity of CO₂ leaked through openings (kg)

- $A = \text{area of opening } (m^2)$
- h = height, center of opening to top of protected space (m)
- ρ_1 = density of carbon dioxide-air atmosphere (kg/m³)
- ρ_A = density of air external to enclosure (kg/m³)
 - t = time duration of leakage (min)

At 1 atm pressure and 21°C:

$$\label{eq:rho_A} \begin{split} \rho_A \ &= 1.202 \ kg/m^3 \\ \rho_1 \ &= 0.006220C + 1.202 \ kg/m^3 \end{split}$$

$$m_{\rm lo} = 0.6 C \rho_{\rm CO_2} A \sqrt{\frac{2g(\rho_1 - \rho_{\rm A})h}{\rho_1}} t$$

where

 m_{lo} = quantity of CO₂ leaked through openings (lb)

 $C = CO_2$ concentration (vol. %)

 $A = \text{area of opening (ft}^2)$

 $g = \text{acceleration of gravity} (32.2 \text{ ft/sec}^2)$

h = height, center of opening to top of protected space (ft)

 ρ_{CO2} = density of carbon dioxide vapor (lb/ft³)

 ρ_1 = density of carbon dioxide-air atmosphere (lb/ft³)

 ρ_A = density of air external to enclosure (lb/ft³)

t = time duration of leakage (min)

At 1 atm pressure and 70°F:

$$\begin{split} \rho_{CO_2} &= 0.114 \ lb/ft^3 \\ \rho_A &= 0.0751 \ lb/ft^3 \\ \rho_1 &= 0.000388C + 0.0750 \ lb/ft^3 \end{split}$$

Ventilation Systems

Generally, mechanical ventilation of a protected volume should be arranged to shut down prior to discharge of a carbon dioxide extinguishment system. Where this is not possible, the quantity of carbon dioxide lost due to ventilation must be found. The amount lost is equal to the volume of fresh air introduced into the protected volume by the mechanical ventilation system over a time period (t) times the flooding factor.

 $m_{1v} = Q_v \times t \times FF$

where

 $m_{1v} = CO_2$ added to compensate for forced ventilation (kg)

 $Q_{\rm v}$ = ventilation rate (kg/m³)

- t =duration of discharge (s)
- $FF = \text{flooding factor} (\text{kg/m}^3)$

Temperature Extremes

The quantity of agent must also be adjusted to account for extreme temperatures in the protected volume whenever present. Extremes temperatures are defined as those above 93°C (200°F) and those below -18°C (0°F). For protected volumes that experience both high and low extreme temperatures, the high and low extreme temperature factors must be calculated and the one with the highest value is chosen.

$$\tau_{\rm H} = 0.0036 (T_{\rm H} - 93)$$

 $\tau_{\rm L} = -0.018 (T_{\rm L} + 18)$

where

where

 $\tau_{\rm H} = 0.002 (T_{\rm H} - 200)$

 $\tau_{\rm H}$ = extreme high temperature factor, in US units

 τ_{L} = extreme low temperature factor, in US units

 $T_{\rm H}$ = high temperature value (°F)

 $T_{\rm L}$ = low temperature value (°F)

 $\tau_{\rm I} = 0.01 \ (0 - T_{\rm I})$

 $\tau_{\rm H}$ = extreme high temperature factor, in SI units

 $T_{\rm H}$ = high temperature value (°C)

 τ_{L} = extreme low temperature factor, in SI units

 $T_{\rm L}$ = low temperature value (°C)

$$m_{\rm T} = \tau \left(m_{\rm cf} + m_{\rm lo} + m_{\rm lv} \right)$$

where

 $m_{\rm T}$ = additional carbon dioxide quantity for extreme temperature

 τ = extreme high or low temperature factor, whichever is greater

 $m_{\rm cf}$ = base quantity of carbon dioxide after applying MCF

 $m_{\rm lo}$ = additional carbon dioxide quantity for leakage through openings

 $m_{\rm lv}$ = additional carbon dioxide quantity for mechanical ventilation

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Hazard Type	Min. Design Conc. (Vol. %)	Flooding Factor (kg/m ³)	Remarks
Dry electrical hazards in general, $V < 56.6 \text{ m}^3$	50	1.6	
Dry electrical hazards in general, $V > 56.6 \text{ m}^3$	50	1.33	Minimum quantity, 91 kg
Record (bulk paper) storage, ducts, covered trenches	65	2.0	
Fur storage vaults, dust collectors	75	2.66	

5.4.2 CO₂ Pressure Relief Venting

In some cases, the pressure rise in an enclosure due to carbon dioxide discharge is capable of damaging the enclosure construction. The risk of enclosure damage can be greatly reduced by designing and installing a means of pressure relief. The size of the minimum pressure relief area required is based on the maximum flow rate of carbon dioxide and is calculated using

$$A_{\rm v} = \frac{239w}{\sqrt{P}}$$

where

 $A_{\rm v} = {\rm vent \ area \ (mm^2)}$

w =carbon dioxide flow rate (kg/min)

P = allowable enclosure pressure limit (kPa)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

$$X = \frac{Q}{1.3\sqrt{P}}$$

where

X = free venting area (in²)

Q =calculated CO₂ flow rate (lb/min)

P = allowable strength of enclosure (lb/ft²)

Allowable Pressure for Average Enclosures

Construction Type	P, kPa	Note
Light building	1.2	Venting sash remains open
Normal building	2.4	Venting sash designed to open freely
Vault building	4.8	

5.5 Clean Agents

Chemical Name	Trade Name	ASHRAE Designation	Chemical Formula
Heptafluoropropane	FM-200	HFC-227ea	CF ₃ CHFCF ₃
Trifluoromethane	FE-13	HFC-23	CHF ₃
Chlorotetrafluoroethane	FE-24	HCFC-124	CHClFCF ₃
Pentafluoroethane	FE-25	HFC-125	CHF ₂ CF ₃
Dodecafluoro-2-methylpentan-3-one	Novec 1230	FK-5-1-12mmy2	$CF_3CF_2C(O)(CF(CF_3))_2$
Hexafluoropropane	FE-36	HFC-236fa	CF ₃ CH ₂ CF ₃
Trifluoroiodide	Triodide	FIC-1311	CF ₃ I
			N ₂ (52%)
N ₂ /Ar/CO ₂	Inergen	IG-541	Ar (40%)
			CO ₂ (8%)
N. / A	A	10.55	N ₂ (50%)
N ₂ /Ar	Argonite	10-55	Ar (50%)
Argon	Argon	IG-01	Ar (100%)
Nitrogen	Nitrogen	IG-100	N ₂

Commercialized Halon Replacement Nomenclature

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Comparisons of Systems in 500–5,000 m³ Range of Volumes

	Percentage Additional Weight When Compared to a Halon 1301 System									
	Halon 1301	CO ₂	FE-13	FM-200	Novec 1230	Inergen	Water Mist			
Weight Comp	Weight Comparison									
500 m ³	0	150	200	50	50	400	625			
1,000 m ³	0	163	188	38	50	450	613			
3,000 m ³	0	200	219	48	71	529	671			
5,000 m ³	0	186	211	36	58	497	522			
Footprint Con	nparison									
500 m ³	0	84	105	20	20	327	1,119			
1,000 m ³	0	82	94	20	20	365	889			
3,000 m ³	0	118	122	19	43	459	1,030			
5,000 m ³	0	99	107	6	19	404	636			
Percentage Cost Comparison							-			
500 m ³	0	108	315	202	259	277	1,032			
1,000 m ³	0	140	406	267	368	330	723			
3,000 m ³	0	200	553	351	513	449	478			
5,000 m ³	0	204	585	361	515	460	376			

				UL (NFPA 2001)			ISO 14520				
	Trade Name	me Equip- ment Manu- facturer	Class B		Class A		Class B		Class A		
Agent			Test	Design	Test	Design	Test	Design	Min (95% of Class B)	Test	Design
HFC-227ea	FM-200, FE-227	А	6.7	8.7							
		В	6.7	8.7							
		С	6.7	8.7							
		D	6.7	8.7	5.2	6.2					
		Е	6.7	8.7	5.4	6.5					
		F	6.6	8.6			6.9	9.0	8.5	6.1 (4.9 WdCrib)	7.9
HFC-125	FE-25	А			6.7	8.0					
		В								8.6 (6.7 WdCrib)	11.2
			8.7	11.3			9.3	12.1	11.5		
	NAF-S-125	С	8.7	11.3	6.7	8.0				6.7	8.7
HFC-23	FE-13	А		18		18					
		В	12.9	16.8			12.6	16.4	15.6	12.5 (10.5 WdCrib)	16.3
FK-5-1-12	Novec 1230										
		А	4.5	5.9	3.5	4.2					
		В	4.5	5.9			4.5	5.9	5.6	4.1 (3.4 WdCrib)	5.3
IG-541	Inergen		28.9	37.6	28.5	34.2	31.7	41.2	39.1	30.7 (28.2 WdCrib)	36.5
IG-55	Argonite						36.5	47.5	45.1	31 (28.7 WdCrib)	40.3
IG-01	Argon						39.2	51.0	48.4	32.2 (30.7 WdCrib)	41.9
IG-100	Nitrogen						33.6	43.7	41.5	31.0 (30 WdCrib)	40.3

Summary of Class A and Class B Extinguishing Concentrations for Various Agents and Equipment Manufacturers

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Comparison of Design Concentrations for Class A Fires

Agent	Heptane MEC (NFPA 2001, 2008) (%)	Class A Design Conc. NFPA 2001/UL (%)	Ratio Class A Design to MEC (NFPA)	Class A Design Conc. (ISO 14520) (%)	Ratio Class A Design Conc. to MEC (ISO 14520)	Ratio Class A Design NFPA 2001 to ISO 14520
Halon 1301	3.4ª	5 ^b	1.47			
CO ₂	23ª	>34°	1.48			
HFC-227ea	6.7	6.25–7.0	0.93-1.04	7.9	1.2	0.79–0.88
HFC-125	8.7	8.0	0.92	11.2	1.3	0.71
HFC-23	12.9	16.8–18	1.3–1.4	16.3	1.26	1.03-1.1
FK-5-1-12	4.5	4.2	0.93	5.3	1.17	0.79
IG-541	31	34.2	1.1	36.5	1.17	0.94
IG-55	35	37.9	1.08	40.3	1.15	0.94
IG-01	42			41.9	1.0	
IG-100	31			40.3	1.3	

^a From NFPA handbook (mid-range value) ^b From NFPA 12A ^c From NFPA 12

5.5.1 Clean Agent Hold Time and Leakage

In order to measure leakage in quiescent environments, the clean agent-air mixture density must be estimated using the following formula:

$$\rho_{\rm m} = V_{\rm d} \frac{C}{100} + \left[\frac{\rho_{\rm a} (100 - C)}{100} \right]$$

where

 $\rho_{\rm m}$ = clean agent-air mixture density (kg/m³)

 $\rho_a = air density, 1.202 kg/m^3$

C =clean agent concentration (%)

 $V_{\rm d}$ = agent vapor density (kg/m³), shown below

Agent	Vapor Density (V _d) kg/m ³ (lb/ft ³)
FC-3-10	9.85 (0.615)
HBFC-22B1	5.54 (0.346)
HCFC-Blend A	3.84 (0.240)
HFC-124	5.83 (0.364)
HFC-125	5.06 (0.316)
HFC-227ea	7.26 (0.453)
HFC-23	2.915 (0.182)
IG-541	1.43 (0.089)
Halon 1301	6.283 (0.392)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

5.5.2 Atmospheric Lifetimes

Greenhouse gases break down in the atmosphere according to the following equation, which describes *e*-folding lifetimes instead of the more common half-lifetimes used in the nuclear field. This means that after a lifetime *L* there will be 1/e of the specimen left (0.368) instead of 1/2 of the specimen (0.5).

$$C = C_0 e^{-kt}$$

where

C =concentration at time t

 C_0 = initial concentration at time t

k = an experimentally determined rate constant, in units = 1/time

 $C = C_0 e^{-t/L}$

where L = the time it takes for the ratio of C:C₀ to be equal to $\frac{1}{e}$

Designation	ODP	GWP (100 Years)	Atmospheric Lifetime (Years)
Halon 1301	12.000	7,030	65
HFC-227ea	0.000	2,900	34.2
HFC-23	0.000	14,310	270
HFC-125	0.000	3,450	29
NAFK-5-1-12	0.000	1	0.038
Inert gas	0.000	0	NA

Environmental Factors for Halocarbon Clean Agents

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

5.5.3 Halocarbon Total Flooding

Toxicity Data for Halocarbon Clean Agent Fire Suppressants

Agent	Trade Name	LC ₅₀ and ALC (%)	NOAEL (%)	LOAEL (%)
FIC-1311	Triodide	>12.8	0.2	0.4
FK-5-1-12	Novec 1230	>10	10	>10
HCFC Blend A	NAFS-III	64	10	>10
HCFC-124	FE-24	23–29	1	2.5
HFC-125	FE-25	>70	7.5	10.0
HFC-227ea	FM-200	>80	9	10.5
HFC-23	FE-13	>65	30	>30
HFC-236fa	FE-36	>45.7	10	15
HFC Blend B	Halotron II	56.7ª	5.0ª	7.5ª

1. LC_{50} is the concentration lethal to 50% of a rat population during a 4-hr exposure. ALC is the approx. lethal concentration.

2. Cardiac sensitization levels are based on the observance or nonobservance of serious heart arrhythmias in a dog. The usual protocol is a 5-min exposure followed by a challenge with epinephrine.

3. High concentration values are determined with the addition of oxygen to prevent asphyxiation.

^a These values are for the largest component of the blend, HFC Blend B (HFC-134A).

Physical Property	Units	FIC-1311	FK-5- 1-12	Blend A	HDFC Blend B	HFC HCFC- 124	HFC-125	HFC- 227ea	HFC-23	HFC- 236fa
Molecular weight	NA	195.91	316.04	92.90	99.4	136.5	120	170	70.01	152
Boiling point at 760 mmHg	°C	-22.5	49	-38.3	-26.1	-12.0	-48.1	-16.4	-82.1	-1.4
Freezing point	°C	-110	-108	<107.2	-103	-198.9	-102.8	-131	-155.2	-103
Critical temperature	°C	122	168.66	124.4	101.1	122.6	66	101.7	26.1	124.9
Critical pressure	kPa	4,041	1,865	6,647	4,060	3,620	3,618	2,912	4,828	3,200
Critical volume	cc/mole	225	494.5	162	198	243	210	274	133	276
Critical density	kg/m ³	871	639.1	577	515.3	560	574	621	527	551.3
Specific heat, liquid at 25°C	kJ/kg °C	0.592	1.103	1.256	1.44	1.153	1.407	1.184	4.130 at 20°C	1.264
Specific heat, vapor at constant pressure (1 atm) and 25°C	kJ/k	0.3618	0.891	0.67	0.848	0.742	0.797	0.808	0.730 at 20°C	0.840
Heat of vaporization at boiling point	kJ/kg	112.4	88	225.6	217.2	165.9	164.1	132.6	239.3	160.4
Thermal conductivity of liquid at 25°C	W/m °C	0.07	0.059	0.09	0.082	0.0684	0.0592	0.069	0.0634	0.0729
Viscosity, liquid at 25°C	сP	0.196	0.524	0.21	0.202	0.257	0.14	0.184	0.044	0.286
Relative dielectric strength at 1 atm at 734 mm Hg, 25° C (N 2 = 1.0)	NA	1.41	2.3	1.32	1.014	1.55	0.955 at 21°C	2	1.04	1.0166
Solubility of water in agent	ppm	1.0062% by weight	<0.001	0.12% by weight	0.11% by weight	700 at 25°C	700 at 25°C	0.06% by weight	500 at 10°C	740 at 20°C

Physical Properties of Clean Halocarbon Agents (Metric Units)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Specific Volume Constants

Conorio Norro	Trada Nama	<i>k</i> ₁	<i>k</i> ₂	<i>k</i> ₁	<i>k</i> ₂	
Generic Maine	ITaue Ivallie	USCS	USCS	Metric	Metric	
Halocarbons						
Halon 1301	Halon 1301	2.2062	0.005046	0.1478	0.00057	
HFC-23	FE-13	4.7302	0.010699	0.3168	0.0011942	
HFC-125	FM-25	2.722	0.006376	0.1828	0.0007085	
HFC-227ea FM-200		1.879775	0.0046625	0.1268	0.0005133	
HFC-236fa	FC-236fa FE-36		0.00514	0.1413	0.00058	
FK-5-1-12	Novec 1230	0.9856	0.002441	0.0664	0.0002743	
Inert Gases						
IG-01	Argon	8.40299	0.018281	0.5612	0.002054	
IG-55	Argonite	9.8809	0.0214956	0.65979	0.0024134	
IG-100	NN-100	11.976	0.02606	0.7997	0.002927	
IG-541	Inergen	9.858	0.02143	0.659	0.00241	

Quantity of Halocarbon Agent

The quantity of halocarbon agent necessary to achieve an established design concentration is

$$w = \frac{V}{S} \left(\frac{C}{100 - C} \right)$$

where

V = net volume of protected space (ft³ or m³)

C = design concentration (%)

w = weight of agent required (lb or kg)

 A_h , altitude correction factor, must be applied to the weight (w) of the agent required.

For -3,000 ft to 5,500 ft of equivalent altitude: $A_h = (-0.000036 \times X) + 1$

For 5,501 ft to 10,000 ft of equivalent altitude: $A_h = (-0.00003 \times X) + 0.96$

where

 A_h = correction factor

X =altitude (ft)

Potential Human Health Effects of Hydrogen Fluoride in Healthy Individuals

Exposure Time	Hydrogen Fluoride (ppm)	Reaction
2 min	<50	Slight eye and nasal irritation
	50-100	Mild eye and upper respiratory tract irritation
	100-200	Moderate eye and upper respiratory tract irritation, slight skin irritation
	>200	Moderate irritation of all body surfaces, increasing concentration may impair escape
5 min	<50	Mild eye and nasal irritation
	50-100	Increasing eye and nasal irritation, slight skin irritation
	100-200	Moderate irritation of skin, eyes, and respiratory tract
	>200	Definite irritation of tissue surfaces, will impair escape at increased concentrations
10 min	<50	Definite eye, skin, and upper respiratory tract irritation
	50-100	Moderate irritation of all body surfaces
	100-200	Moderate irritation of all body surfaces, escape-impairing effects likely
	>200	Escape-impairing effects will occur, increasing concentrations can be lethal without medical intervention

5.5.4 Inert Gas Total Flooding

Physical Property	Units	IG-01	IG-100	IG-541	IG-55
Molecular weight	NA	39.9	28.0	34.0	33.95
Boiling point at 760 mmHg	°C	-189.85	-195.8	-196	-190.1
Freezing point	°C	-189.35	-210.0	-78.5	-199.7
Critical temperature	°C	-122.3	-146.9	NA	-134.7
Critical pressure	kPa	4,903	3,399	NA	4,150
Specific heat, vapor at constant pressure (1 atm) and 25°C	kJ/kg °C	0.519	1.04	0.574	0.782
Heat of vaporization at boiling point	kJ/kg	163	199	220	181
Relative dielectric strength at 1 atm at 734 mm Hg, 25° C (N 2 = 1.0)	NA	1.01	1.0	1.03	1.01
Solubility of water in agent at 25°C	NA	0.006%	0.0013%	0.015%	0.006%

Physical Properties of Clean Inert Gas Agents (Metric Units)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

For inert gases, the following formula is used:

$$X = 2.303 \, \frac{V}{S} \log\left(\frac{100}{100 - C}\right) V_{\rm s}$$

where

X = volume of inert gas required at 70°F or 21°C (ft³ or m³)

 $V_{\rm s}$ = specific volume at 70°F or 21°C (ft³ or m³)

V = net protected hazard volume (ft³)

S =specific volume (ft³ or m³)

$$S = k_1 + k_2(T)$$

where

T = minimum ambient temperature of the protected space (°F or °C)

 k_1 and k_2 = constants in *Specific Volume Constants* table above

Altitude correction factor, *Y*, shall be applied.

For -3,000 ft to 5,500 ft of equivalent altitude: $Y = (-0.000036 \times X) + 1$

For 5,501 ft to 10,000 ft of equivalent altitude: $Y = (-0.00003 \times X) + 0.96$

where

Y =correction factor

X =altitude (ft)

	Cup Burner Extinguishment Concentration (vol%)						
Fuel	HFC-227eab	FC-3-1-10	HFC-23	HCFC Blend A	N2		
Acetone	6.8	5.5 ^e					
Acetonitrile	3.7						
AV gas	6.7						
n-Butanol	7.1						
n-Butyl acetate	6.6						
Cyclopentanone	6.7						
Diesel no. 2	6.7						
Ethanol	8.1	6.8 ^e					
Ethyl acetate	5.6						
Ethylene glycol	7.8						
Gasoline (unleaded)	6.5						
Hydraulic fluid	5.8	4.3–4.5ª			22–26 ^a		
JP-4	6.6						
JP-5	6.0ª	4.8ª			27ª		
	6.6°						
Methane	6.2						
Methanol	10.0	9.4°					
Methyl ethyl ketone	6.7						
Methyl isobutyl ketone	6.6						
Morpholine	7.3						
Propane	6.3	6.0ª			32.5ª		
i-Propano <u>l</u>	7.3						
Pyrrolidine	7.0						
Tetrahydrofuran	7.2						
Toluene	5.8						
Turbo hydraulic oil 2380	5.1						
Xylene	5.3						
Note: For n-Heptane refer to NFPA 2001. ^a from Hamins et al. ^b from Robin ^c from Sheinson et al. ^d from Moore et al. ^e from Ferreira et al.							

Cup Burner	Minimum	Extinguishing	Concentrations

6 FIRE ALARM AND DETECTION

6.1 General Information

Fire alarm and detection systems rely heavily on the information contained in installation standards such as NFPA 72, National Fire Alarm and Signaling Code.

6.2 Heat Detector RTI

The use of RTI as a heat-transfer function is a simplification and incorporates both conductive and convective heat-transfer mechanisms.

$$RTI = \tau_0 \sqrt{u_0}$$

where

RTI = response time index $(m^{1/2}s^{1/2} \text{ or } ft^{1/2}sec^{1/2})$

 τ_0 = detector time constant (sec)

 $u_0 = \text{gas velocity} (1.5 \text{ m/s or } 5.0 \text{ ft/sec, typ.})$

The sensitivity of a detector can be expressed in terms of RTI as related to the flow of hot gases as

$$RTI = \frac{t_r u_0^{1/2}}{\ln\left(\frac{T_g - T_a}{T_g - T_r}\right)}$$

where

RTI = response time index ($m^{1/2}s^{1/2}$ or $ft^{1/2}sec^{1/2}$)

 $T_{\rm a}$ = ambient temperature (°C or °F)

 T_{g} = temperature of fire gases (°C or °F)

 t_r = response time (sec)

 u_0 = velocity at which τ_0 was measured (m/s or ft/sec)

 $T_{\rm r} = T_{\rm s}$ = rated operating temperature of a detector or sprinkler (°C or °F)
6.3 Rate of Heat Release

See Sections 3.2.6 to 3.2.10.

6.4 Heat Detector Spacing

6.4.1 Radial Distance from Fire Axis to Detector

 $s = r\sqrt{2}$

where

S = spacing of detectors (ft or m)

r = radial distance from fire plume axis (ft or m)

$$r = \frac{S}{\sqrt{2}}$$

6.5 Smoke Detector Response

6.5.1 Obscuration

Percent obscuration:

Percent obscuration per unit distance, $O_{\rm u}$:

$$O = 100 \left(I - \frac{I}{I_0} \right) \qquad \qquad O_{\rm u} = 100 \left[1 - \left(\frac{I}{I_0} \right)^{1/I} \right]$$

where

I = intensity of light beam in presence of smoke (cd)

 I_0 = initial intensity of light beam (cd)

Optical density:

Optical density per unit distance, D_u (ft⁻¹ or m^{-1}):

$$D = \log_{10}\left(\frac{I_0}{I}\right) = -\log_{10}\left(\frac{I}{I_0}\right) \qquad \qquad D_u = \frac{D}{l} = \frac{1}{l}\log_{10}\left(\frac{I_0}{I}\right) = -\log_{10}\left(\frac{I}{I_0}\right)$$

where l = distance between source and photocell (ft or m)

6.5.2 Radiant Energy Detection

During the combustion process, electromagnetic radiation is emitted over a broad range of the spectrum. Currently, however, fire detection devices operate only in one of three bands: ultraviolet (UV), visible, or infrared (IR), where the wavelengths are defined within the following ranges:

Ultraviolet	0.1–0.35 μm
Visible	0.35–0.75 μm
Infrared	0.75–220 μm

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Radiant power to detector:

$$S = \frac{kPe^{\zeta d}}{d^2}$$

where

S = radiant power reaching detector (W)

k = proportionality constant for detector (m⁻²)

P = radiant power emitted by fire (W)

 ζ = extinction coefficient of air (m⁻¹)

d = distance between fire and detector (m)

6.5.3 Sensitivity Level

$$D_{\rm u} = \frac{D_{\rm m}(m)}{V_{\rm c}} \qquad t_{\rm a} = \frac{m}{m_{\rm bi}}$$

where

 $D_{\rm u}$ = upper sensitivity level (m⁻¹)

 $D_{\rm m}$ = mass optical density (m²/g)

m = mass (g)

 $V_{\rm c}$ = volume of enclosure (m³)

 t_a = activation time (s)

 $m_{\rm br}$ = mass burning rate (g/s)

6.6 Audibility Design

6.6.1 Sound Pressure Level

 $L_{\rm P} = L_{\rm W} + C_1 + C_2$

where

 $L_{\rm P}$ = sound pressure level (dBA)

 $L_{\rm W}$ = sound power level (dB)

 C_1 = adjustment for mounting position of sounder (dimensionless)

 C_2 = adjustment for distance from sounder (dimensionless)

Sounder Position	<i>C</i> ₁
Wall/ceiling mounted (more than 1 m from any other major surface)	+5
Wall/ceiling mounted (closer than 1 m to one other major surface)	+7

Adjustment for Mounting Position of Sounder (C_1)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

	()
Distance from Source (m)	<i>C</i> ₂
1	-11
2	-17
3	-21
6	-27
12	-33
15	-35
20	-37
25	-39
30	-41
40	-43
50	-45
60	-47
80	-49
100	-51

Adjustment for Distance (C₂) with Distance from Source (m)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

6.6.2 Sound Power Level

 $L_{\rm W} = L + 20 \log_{10} r + 11$

where

 $L_{\rm W}$ = sound power level of sounder (dBA)

L = manufacturer's stated output (dBA)

r = distance (m)

6.7 Illumination Design

6.7.1 Illumination

$$E = \frac{I}{d^2}$$

where

E = illumination (lumens per unit area or footcandle)

I =intensity of light source (cd)

d = distance from light source to object (ft)

6.7.2 Effective Intensity

$$I_{\rm e} = \frac{\left(\int_{t_1}^{t_2} Idt\right)}{\left(a + t_2 - t_1\right)}$$

where

 $I_{\rm e}$ = effective intensity

I = instantaneous intensity

 $t_1 = \text{time (s) of beginning of that part of the flash where I exceeds I_e$

 $t_2 = \text{time (s) of end of that part of the flash where I exceeds } I_e$

6.8 Voltage Drop Calculation

 $V_{\rm load} = V_{\rm terminals} - (I_{\rm load} R_{\rm conductors})$

where

 $V_{\text{load}} = 16$ volts minimum operating voltage of appliance (unless otherwise specified)

 $V_{\text{terminals}} = 20.4$ volts (unless otherwise specified)

 I_{load} = total current draw of appliance (A)

 $R_{\text{conductors}} = \text{conductor resistance} (\Omega)$

7 SMOKE CONTROL

7.1 Fundamentals

7.1.1 Door Opening Forces

$$F = F_{\rm DC} + \frac{k_{\rm d} W A \Delta P}{2(W - d)}$$

where

F = total door opening force (lb or N)

 $F_{\rm DC}$ = force to overcome door closer (lb or N)

W = door width (ft or m)

- $A = \text{door area} (\text{ft}^2 \text{ or } \text{m}^2)$
- ΔP = pressure difference across door (in. H₂O or Pa)
- d = distance from doorknob to edge of knob side of door (ft or m)
- $k_{\rm d}$ = coefficient, 5.20 or 1.00

7.1.2 Wind Pressure

$$P_{\rm W} = C_{\rm W} K_{\rm W} V^2$$

where

 $P_{\rm W}$ = wind pressure (in. H₂O)

- $C_{\rm W}$ = dimensionless pressure coefficient ranging from -0.8 to 0.8, with positive values for windward walls and negative values for leeward walls
- $K_{\rm W}$ = coefficient, 4.82 × 10⁻⁴
 - V = wind velocity (mph)

Local Design Wind

$$U_{\rm H} = U_{\rm met} \left(\frac{\delta_{\rm met}}{H_{\rm met}}\right)^{a_{\rm met}} \left(\frac{H}{\delta}\right)^{a}$$

where

 $U_{\rm H}$ = wind velocity at wall height H (mph or m/s)

 $U_{\rm met}$ = measured velocity (mph or m/s)

 $H_{\rm met}$ = height of wind measurement(ft or m)

 δ_{met} = boundary layer height in vicinity of wind anemometer (ft or m)

 a_{met} = wind exponent in vicinity of wind anemometer (dimensionless)

- H =height of wall (ft or m)
- δ = boundary layer height at wall (ft or m)
- a = wind exponent at wall (dimensionless)

Wind Pressure on a Wall

$$p_{\rm w} = 0.00645 C_{\rm w} \rho_{\rm o} U_{\rm H}^2$$
$$p_{\rm w} = \frac{1}{2} C_{\rm w} \rho_{\rm o} U_{\rm H}^2 \text{ for SI units}$$

where

 $p_{\rm w}$ = wind pressure (in. H₂O or Pa)

 $C_{\rm w}$ = pressure coefficient (dimensionless)

 ρ_0 = outside air density (lb/ft³ or kg/m³)

 $U_{\rm H}$ = wind velocity at wall height H (mph or m/s)

7.1.3 Height of Flame Tip (z_1)

 $z_1 = 0.533 \dot{Q}_c^{2/5}$

where

 z_1 = limiting elevation (ft)

 \dot{Q}_{c} = convection portion of heat release rate (Btu/sec)

= 70% of \dot{Q} total = 0.7 \dot{Q}

7.1.4 Fuel Mass Consumed

Steady Fires

$$\dot{m}_{\rm f} = \frac{Q_{\rm t}}{H_{\rm c}}$$

where

 $\dot{m}_{\rm f}$ = mass burning rate (kg/s)

 $\dot{Q}_{\rm t}$ = total heat release rate for steady fires (kW)

 $H_{\rm c}$ = heat of combustion (kJ/kg)

Unsteady t² fires

$$\dot{m}_{\rm f} = 333 \frac{t^3}{H_{\rm c} t_{\rm g}^2}$$

where

 $\dot{m}_{\rm f}$ = mass burning rate (kg/s) t = time (s) $H_{\rm c}$ = heat of combustion (kJ/kg)

 $t_{\rm g}$ = growth time (s)

7.1.5 Flow Paths

Effective Area for Flow Paths in Parallel

$$A_{\rm e} = \sum_{i=1}^{n} A_{\rm i}$$

where

 $A_{\rm e}$ = effective flow area (ft² or m²)

 A_i = flow area of path *i* (ft² or m²)

Effective Area for Flow Paths in Series

$$A_{\rm e} = \left(\sum_{i=1}^{n} \frac{1}{A_{\rm i}^2}\right)^{-1/2}$$

where

 $A_{\rm e}$ = effective flow area (ft² or m²)

 A_i = flow area of path *i* (ft² or m²)

7.1.6 Stack Effect/Buoyancy

$$\Delta P = K_{\rm S} \left(\frac{1}{T_{\rm O}} - \frac{1}{T_{\rm I}} \right) h$$

where

 ΔP = pressure difference (in. H₂O or Pa)

 $K_{\rm S}$ = coefficient (7.64 or 3,460)

$$T_{\rm O}$$
 = absolute temperature of outside air (°R or K)

- $T_{\rm I}$ = absolute temperature of inside air (°R or K)
- h = distance above neutral plane (ft or m)

Pressure difference for normal/reverse stack effect:

$$\Delta p_{\rm SO} = 7.63 \left(\frac{1}{T_{\rm O} + 460} - \frac{1}{T_{\rm S} + 460} \right) z$$

$$\Delta p_{\rm SO} = 3,460 \left(\frac{1}{T_{\rm O} + 273} - \frac{1}{T_{\rm S} + 273} \right) z \text{ for SI units}$$

where

 Δp_{SO} = pressure difference from a shaft to the outside (in. H₂O or Pa)

 $T_{\rm O}$ = temperature of outside air (°F or °C)

 $T_{\rm S}$ = temperature of the shaft (°F or °C)

z = distance above neutral plane (ft or m)

7.1.7 Pressure Difference

$$\Delta p_{\rm FS} = 7.63 \left(\frac{1}{T_{\rm O} + 460} - \frac{1}{T_{\rm F} + 460} \right) z$$

$$\Delta p_{\rm FS} = 3,460 \left(\frac{1}{T_{\rm O} + 273} - \frac{1}{T_{\rm F} + 273} \right) z \text{ for SI units}$$

where

 $\Delta p_{\rm FS}$ = pressure difference from fire space to surroundings (in. H₂O or Pa)

 $T_{\rm O}$ = temperature of surroundings (°F or °C)

 $T_{\rm F}$ = temperature of fire space (°F or °C)

z = distance above neutral plane (ft or m)

7.1.8 Untreated Pressurization Air

Stairwell Temperature

 $T_{\rm S} = T_{\rm O} + \eta (T_{\rm B} - T_{\rm O})$

where

 $T_{\rm S}$ = temperature in stairwell (°F or °C)

 $T_{\rm O}$ = temperature of outside air (°F or °C)

 $T_{\rm B}$ = temperature in building (°F or °C)

 η = heat-transfer factor (dimensionless)

7.1.9 Scaling Relationships

Quintiere's review of scaling relationships based on preserving the Froude number, Fr (defined as v/gl):

For the relationships in this section the following apply:

- Subscript m identifies value for small-scale model
- Subscript F identifies value for full-scale building
- l = characteristic length

Temperature

 $T_{\rm m} = T_{\rm F}$

Geometric Position

$$x_{\rm m} = x_{\rm F} \left(\frac{l_{\rm m}}{l_{\rm F}}\right)$$

where x = geometric position

Pressure

$$\Delta p_{\rm m} = \Delta p_{\rm F} \left(\frac{l_{\rm m}}{l_{\rm F}}\right)$$

where Δp = pressure difference

Velocity

$$v_{\rm m} = v_{\rm F} \left(\frac{l_{\rm m}}{l_{\rm F}}\right)^{1/2}$$

where v = velocity

Time

$$t_{\rm m} = t_{\rm F} \left(\frac{l_m}{l_{\rm F}}\right)^{1/2}$$

where t = time

Convective Heat Release

$$\dot{Q}_{\rm c,m} = \dot{Q}_{\rm c,F} \left(\frac{l_{\rm m}}{l_{\rm F}}\right)^{5/2}$$

where \dot{Q}_{c} = convective portion of heat-release rate of fire

 \dot{Q}_{c} = convection portion of heat release rate (Btu/sec)

= 70% of
$$\dot{Q}$$
 total = 0.7 \dot{Q}

Volumetric Flow Rate

$$V_{\text{fan, m}} = V_{\text{fan, F}} \left(\frac{l_{\text{m}}}{l_{\text{F}}}\right)^{5/2}$$

where

 V_{fan} , m = volumetric flow rate for small-scale model (m³/s)

 V_{fan} , F = volumetric flow rate for full-scale building (m³/s)

 $l_{\rm m}$ = length for small-scale model (m)

 $l_{\rm f}$ = length for full-scale building (m)

7.1.10 Equivalent Width

Balcony spill plume:

L = w + b

where

L = width of balcony spill plume (m)

- w = width of balcony opening from area of origin (m)
- b = distance from store opening to balcony edge (m)

7.1.11 Gas Species Concentration

$$ppm_i = \frac{MW_{air}}{MW_i} Y_i \times 10^6$$

where

 $ppm_i = concentration (parts per million)$

 MW_{air} = molecular weight of air (kg)

 MW_i = molecular weight of species *i* (kg)

 Y_i = mass fraction of gas species

7.1.12 Exposure to Toxic Gases

Approximate effects of exposure to toxic gases:

$$\text{FED} = \frac{\sum_{i=1}^{n} C_i \Delta t_i}{LCt_{50}}$$

where

FED = fractional effective dose (dimensionless)

 C_i = mass concentration of material burned at end of time interval *i* (lb/ft³ or g/m³)

 Δt_i = time interval *i* (min)

 LCt_{50} = lethal exposure dose from test data (lb-min/ft³ of g-min/m³)

n = number of discrete concentration time pairs

7.1.13 Heat Exposure for Hyperthermia

$$F_{\text{Ith}} = \sum_{i=1}^{n} \frac{\Delta t}{exp(5.67 - 0.0152T_i)}$$
$$F_{\text{Ith}} = \sum_{i=1}^{n} \frac{\Delta t}{exp(5.185 - 0.0273T_i)} \text{ for SI units}$$

where

 F_{Ith} = total cumulative dose (dimensionless)

 $\Delta t = \text{time interval (min)}$

 T_i = temperature of air in interval *i* (°F or °C)

7.2 Smoke

Where makeup air could come into contact with the plume, the maximum air velocity is 200 ft/min (1.02 m/s). A higher makeup air velocity is permitted when supported by an engineering analysis.

7.2.1 Expansion Ratio

$$\frac{V_{\rm out}}{V_{\rm in}} = \frac{T_{\rm out} + 460}{T_{\rm in} + 460}$$

where

 V_{out} = volumetric flow of smoke out of fire compartment (cfm or m³/s)

 $V_{\rm in}$ = volumetric flow of air into fire compartment (cfm or m³/s)

 T_{out} = temperature of smoke leaving fire compartment (°F or °C)

 T_{in} = temperature of air entering fire compartment (°F or °C)

7.2.2 Optical Densities

Smoke-Filling

$$D = \frac{D_{\rm m}Q}{\chi_{\rm a}H_{\rm c}A(H-z)}$$

where

D = optical density per unit path length (m⁻¹)

 $D_{\rm m}$ = mass optical density (m²/kg)

 \dot{Q} = heat release rate of fire (kW)

 χ_a = combustion efficiency (dimensionless)

 $H_{\rm c}$ = heat of combustion (kJ/kg)

A =cross-sectional area of atrium (m²)

H = height of ceiling above top of fuel surface (m)

z = clear height, position of smoke layer interface above top of fuel surface (m)

Vented

$$D = \frac{D_{\rm m} \dot{Q}}{\chi_{\rm c} \Delta H_{\rm c} \left(\frac{\dot{m}}{\rho}\right)}$$

where

D = optical density per unit path length (m⁻¹)

 $D_{\rm m}$ = mass optical density (m²/kg)

 \dot{Q} = heat-release rate of fire (kW)

 χ_c = combustion efficiency (dimensionless)

 $H_{\rm c}$ = heat of combustion (kJ/kg)

 \dot{m} = mass entrainment rate in plume (kg/s)

$$\rho = \text{density} (\text{kg/m}^3)$$

7.2.3 Height of First Indication of Smoke for Steady Fires

$$\frac{z}{H} = 0.67 - 0.28 \ln \left(\frac{\left(\frac{t \dot{Q}^{1/3}}{H^{4/3}} \right)}{\left(\frac{A}{H^2} \right)} \right)$$

Note: For SI Units, use 1.11 instead of 0.67

where

z = height of first indication of smoke above base of fire (m)

H = ceiling height above fire surface (m)

t = time (sec)

- \dot{Q} = heat release rate from steady fire (kw)
- A = cross-sectional area (length × width) of space being filled with smoke (m²)

 $\frac{A}{H^2}$ = aspect ratio

Steady Fire Smoke Layer Position

$$\frac{z}{H} = \left[1 + \frac{2k_{\rm v}t\dot{Q}^{1/3}}{3\left(\frac{A}{H^2}\right)H^{4/3}}\right]^{-3/2}$$

where

z = clear height, position of smoke layer interface above top of fuel surface (m)

H = height of ceiling above top of fuel surface (m)

 k_v = volumetric entrainment constant (0.065 m^{4/3}kW^{-1/3}s⁻¹)

$$t = time(s)$$

- \dot{Q} = heat-release rate of fire (kW)
- A = cross-sectional area of atrium (m²)

t² Fire Smoke Layer Position

$$\frac{z}{H} = \left[1 + \frac{4k_v t \left(\frac{t}{t_g}\right)^{2/3}}{\left(\frac{A}{H^2}\right) H^{4/3}}\right]^{-3/2}$$

where

z = clear height, position of smoke layer interface above the top of fuel surface (m)

H = height of ceiling above top of fuel surface (m)

 $k_{\rm v}$ = volumetric entrainment constant (0.065 m^{4/3}kW^{-1/3}s⁻¹)

t = time(s)

- t_{g} = growth time (s)
- A =cross-sectional area of the atrium (m²)

Functional Relationship of the Mass Entrainment Rate

$$\dot{m} = f \left(\dot{Q}_c^{1/3} z^{5/3} \right)$$

where

 \dot{m} = mass entrainment rate in plume (kg/s)

 \dot{Q}_{c} = convective portion of heat release rate of fire (kW)

 \dot{Q}_{c} = convection portion of heat release rate (Btu/sec)

- = 70% of \dot{Q} total = 0.7 \dot{Q}
- z = clear height, position of smoke layer interface above top of fuel surface (m)

The limiting height (z_f) may be estimated as

$$z_{\rm f} = 0.166 \dot{Q}_{\rm c}^{2/3}$$

For clear heights less than the limiting height ($z < z_f$), the entrainment rate is

$$\dot{m} = 0.032 \dot{Q}_{\rm c}^{3/5} z$$

For clear heights greater than or equal to the limiting height $(z \ge z_f)$, the entrainment rate is

 $\dot{m} = 0.071 \dot{Q}_{\rm c}^{1/3} z^{5/3} + 0.0018 \dot{Q}_{\rm c}$

The validity of neglecting z_0 in the above equation is based on the observation that z_0 is typically small compared to z.

See Chapter 3, Section 3.1.11 for calculation of virtual origin.

7.2.4 Height of First Indication of Smoke for Unsteady (or Growing) Fires

$$\frac{z}{H} = 0.23 \left[\frac{t}{t_g^{2/5} H^{4/5} \left(\frac{A}{H^2}\right)^{3/5}} \right]^{-1.45} \quad \text{or} \quad t = t_g^{2/5} H^{4/5} \left(\frac{A}{H^2}\right)^{3/5} \sqrt[1.45]{\frac{0.23H}{Z}}$$

Note: For SI Units, use 0.91 instead of 0.23

where

- z = height of first indication of smoke above fire surface (ft or m)
- H = ceiling height above the surface (ft or m)

t = time (sec)

- $t_{\rm g}$ = growth time (sec) (time for fire to reach 1,000 Btu/sec or 1,055 kW)
- A = cross-sectional area of smoke filled space (ft² or m²)

7.2.5 Transport Lag

Steady Fire Plume Transport Lag

$$t_{\rm pl} = 0.67 H^{4/3} / \dot{Q}^{1/3}$$

t² Fire Plume Transport Lag

$$t_{\rm pl} = 0.1 H^{4/5} t_{\rm g}^{2/3}$$

Steady Fire Ceiling Jet Transport Lag

$$t_{\rm cj} = \frac{r^{11/6}}{1.2\dot{Q}^{1/3}H^{1/2}}$$

t² Fire Ceiling Jet Transport Lag

$$t_{\rm cj} = \frac{0.72rt_{\rm g}^{2/3}}{H^{1/5}}$$

For all:

 $t_{\rm pl}$ = plume transport lag (s)

H = height of ceiling above top of fuel (m)

 \dot{Q} = heat release rate of fire (kW)

 t_{g} = growth time (s)

r = horizontal distance from plume centerline (m)

 t_{ci} = ceiling jet transport lag (s)

7.2.6 Mass Flow Rate if $H > z_1$ (Axisymmetric Plume)

Use where ambient temperature rise is more than 4°F.

$$m = \left[0.022\dot{Q}_c^{1/3} z^{5/3}\right] + 0.0042\dot{Q}_c$$

where

m = mass flow rate of plume at height z (lb/sec)

 \dot{Q}_{c} = convection portion of heat release rate (Btu/sec)

 \dot{Q}_{c} = convection portion of heat release rate (Btu/sec)

= 70% of \dot{Q} total = 0.7 \dot{Q}

z = height above the fuel (ft)

$$z_{1} = 0.166 \dot{Q}_{c}^{2/5}$$

when $z > z_{1}$, $m = 0.071 \dot{Q}_{c}^{1/3} z^{5/3} + 0.0018 \dot{Q}_{c}$
when $z \le z_{1}$, $m = 0.032 \dot{Q}_{c}^{3/5} z$

where

 z_1 = limiting elevation (m)

$$\dot{Q}_c$$
 = convective portion of heat-release rate (kW)

$$\dot{Q}_{c}$$
 = convection portion of heat release rate (Btu/sec)

= 70% of \dot{Q} total = 0.7 \dot{Q}

- z = distance from base of fire to smoke layer interface (m)
- m = mass flow rate in plume at height z (kg/s)

$$z_l = 0.533 \dot{Q}_c^{2/5}$$

when $z > z_l$, $m = (0.022 \dot{Q}_c^{1/3} z^{5/3}) + 0.0042 \dot{Q}_c$
when $z \le z_l$, $m = 0.0208 \dot{Q}_c^{3/5} z$

where

- z_1 = limiting elevation (ft)
- \dot{Q}_{c} = convective portion or heat release rate (Btu/sec)
- \dot{Q}_{c} = convection portion of heat release rate (Btu/sec)
 - = 70% of \dot{Q} total = 0.7 \dot{Q}
 - z = distance above the base of the fire to the smoke layer interface (ft)
- m = mass flow rate in plume at height z (lb/sec)

7.2.7 Average Mass Vent Flow Rate of Fire Plume

$$m_{\rm p} = \left(\frac{\rho_{\rm o}^2 g}{2}\right)^{1/2} A_{\rm v} d^{1/2}$$

where

 $m_{\rm p}$ = mass flow rate of the plume (lb/sec)

$$\rho_0 = \text{density of air } (0.075 \text{ lb/ft}^3)$$

- $g = \text{acceleration of gravity} (32.2 \text{ ft/sec}^2)$
- $A_{\rm v}$ = aerodynamic vent area (ft²)
- d =depth of the smoke layer (ft)

7.2.8 Volumetric Flow Rate

$$V = \frac{60m}{\rho}$$

where

V = volumetric flow rate (ft³/min)

- m = mass flow rate of plume at height z (lb/sec)
- ρ = density of air (0.075 lb/ft³)

Ratio of Volumetric Flows

T 7

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{T_{\text{out}} + 460}{T_{\text{in}} + 460}$$
$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{T_{\text{out}} + 273}{T_{\text{in}} + 273} \text{ for SI units}$$

©2020 NCEES

where

- V_{out} = volumetric flow of smoke out of fire compartment (cfm or m³/s)
- $V_{\rm in}$ = volumetric flow of air into fire compartment (cfm or m³/s)
- T_{ou} = temperature of smoke leaving fire compartment (°F or °C)
- $T_{\rm in}$ = temperature of air entering fire compartment (°F or °C)

Relationship for Volumetric Rate and Mass Rate

$$\dot{V} = \frac{\dot{m}}{\Omega}$$

7.2.9 Density of Smoke

$$\rho_{\rm s} = \frac{528\rho_{\rm o}}{460+T}$$

where

 $\rho_0 \ = \ density \ of \ ambient \ air \ at \ sea \ level \ (0.0765 \ lb/ft^3)$

- ρ_s = density of smoke at temperature T (lb/ft³)
- T = temperature of smoke (°F)

$$\rho_{\rm s} = \frac{144P_{\rm atm}}{R(460+T)}$$

where

 $P_{\rm atm}$ = atmospheric pressure (14.696 psi)

$$R = \text{gas constant} (53.34)$$

 ρ_s = density of smoke at temperature T (lb/ft³)

T = temperature of smoke (°F)

Density of Air and Smoke

$$\rho = \frac{144p}{R(T+460)}$$
$$\rho = \frac{p}{R(T+273)}$$
 for SI units

where

 ρ = density (lb/ft³ or kg/m³)

- $p = \text{pressure (lb/in}^2 \text{ or Pa)}$
- $R = \text{gas constant} [53.34 \text{ ft-lb}_{\text{f}}/\text{lb}_{\text{m}}^{\circ}\text{R or } 287 \text{ J/kg-K}]$
- T =temperature (°F or °C)

7.2.10 Maximum Flow Rate to Avoid Plugholing

$$m_{\rm max} = 0.354\beta d^{\frac{5}{2}} \left(\frac{T_{\rm s} - T_{\rm o}}{T_{\rm s}}\right)^{\frac{1}{2}} \left(\frac{T_{\rm o}}{T_{\rm s}}\right)^{\frac{1}{2}}$$

where

 $m_{\rm max}$ = maximum mass rate of exhaust without plugholing (lb/sec)

 β = exhaust location (dimensionless)

d = depth of smoke layer below exhaust inlet (ft)

 $T_{\rm s}$ = absolute temperature of smoke layer (°R)

 T_{o} = absolute temperature of ambient layer (°R)

Volumetric Flow Rate

$$V_{\rm max} = 452 \gamma d^{5/2} \left(\frac{T_{\rm s} - T_{\rm o}}{T_{\rm o}} \right)^{1/2}$$

where

 $V_{\rm max}$ = maximum volumetric flow rate without plugholing at $T_{\rm s}$ (ft³/min)

 γ = exhaust location factor

- = 1 for exhaust inlets centered no closer than twice the diameter from nearest wall
 0.5 for exhaust inlets centered less than twice the diameter from nearest wall
 0.5 for exhaust inlets on a wall
- d = depth of smoke layer below lowest point of exhaust inlet (ft)
- $T_{\rm s}$ = absolute temperature of smoke layer (°R)
- T_{o} = absolute temperature of ambient layer (°R)

To avoid plugholing, the maximum exhaust capacity at an extract point is:

$$\dot{V}_{\rm max} = 4.16\gamma d^{5/2} \left(\frac{\Delta T}{T_{\rm o}}\right)^{1/2}$$

where γ = factor relating to the location of the vent; if the vent is in the middle of the space, $\gamma = 1$

7.2.11 Plume Rise

$$z_{\rm m} = 3.79 F^{1/4} G^{-3/8}$$

where

 $z_{\rm m} =$ maximum rise of plume (m)

$$F = \frac{g\dot{Q}_{\rm c}}{T_{\rm o}\rho_{\rm o}c_{\rm p}}$$
 and $G = -\left(\frac{g}{\rho_{\rm o}}\right)\frac{d\rho_{\rm o}}{dz}$

where

 $g = \text{gravity} = 9.81 \text{ m/s}^2$

 \dot{Q}_{c} = convective portion of heat release rate (kW)

 \dot{Q}_{c} = convection portion of heat release rate (Btu/sec)

= 70% of
$$\dot{Q}$$
 total = 0.7 \dot{Q}

 ρ_0 = density of ambient air at sea level (kg/m³)

z = clear height, position of smoke layer interface above top of fuel surface (m)

 T_{o} = ambient temperature (K)

 $c_{\rm p}$ = specific heat (kJ/kg-K)

For standard conditions and ideal gas behaviors:

$$F = 0.0277 \ \dot{Q}_{\rm c}$$
 and $G = 0.0335 \ \frac{dT_{\rm o}}{dz}$

Using simplified *F* and *G* above:

$$z_{\rm m} = 5.54 \dot{Q}_{\rm c}^{1/4} \left(\frac{\Delta T_{\rm o}}{H}\right)^{-3}$$

where H = height of ceiling above top of fuel surface (m)

Minimum fire size for smoke to reach atrium ceiling without stratifying:

$$\dot{Q}_{\rm c} = 0.00118 H^{5/2} \Delta T_{\rm o}^{3/2}$$

7.2.12 Plume Width

 $d = 2.4\alpha z$

where

d = plume diameter (m)

z = clear height, position of smoke layer interface above top of fuel surface (m)

where

 $\alpha \cong 0.15$ d = 0.36z

Handa and Sugawa Empirical Correlation

 $d = d_{\rm o} z^{1/2}$

where d_0 = diameter of fire (m)

7.2.13 Plume Diameter

$$d = 0.48 \left(\frac{T_{\rm c}}{T_{\rm o}}\right)^{1/2} z$$

where

 $T_{\rm c}$ = temperature of plume centerline (K)

- T_{0} = ambient temperature (K)
- z = clear height, position of smoke layer interface above top of fuel surface (m)

7.2.14 Balcony Spill Plume—Air Entrainment

Where the height of the smoke layer is less than 15 m

$$\dot{m} = 0.36 (\dot{Q}W^2)^{1/3} (z_b + 0.25H)$$

where

W = width of balcony opening from area of origin (m)

 $z_{\rm b}$ = position of smoke layer interface above top of balcony (m)

H = height of ceiling above top of fuel surface (m)

 \dot{Q} = heat release rate of fire (kW)

 \dot{m} = mass flow rate in plume (kg/s)

Where the height of the smoke layer is less than 15 m and the width of the plume is less than 10 m

$$\dot{m} = 0.59 \dot{Q}^{1/3} W^{1/5} (z_{\rm b} + 0.17 \dot{W}^{7/15} H + 10.35 W^{7/15} - 15)$$

7.2.15 Average Temperature of Fire Plume

$$T_{\rm p} = T_{\rm o} + \frac{\dot{Q}_{\rm c}}{mc_{\rm p}}$$

where

 $T_{\rm p}$ = average plume temperature at elevation z (°F)

 T_{o} = ambient temperature (°F)

 $\dot{Q}_{\rm c}$ = convection portion of heat release rate (Btu/sec)

m = mass flow rate of plume at height z (lb/sec)

 $c_{\rm p}$ = specific heat of plume gases (0.24 Btu/lb-°F)

7.2.16 Plume Centerline Temperature

$$T_{\rm c} = 0.08 T_{\rm o} \dot{Q}_{\rm c}^{2/3} z^{-5/3} + T_{\rm o}$$

where

 $T_{\rm c}$ = temperature of plume centerline (K)

 T_{0} = ambient temperature (K)

 \dot{Q}_{c} = convection portion of heat release rate (kW)

z = clear height, position of smoke layer interface above top of fuel surface (m)

Volumetric venting rate for other heat release rates/temperature rises:

$$\frac{Q_{c1}}{Q_{c2}} = \frac{V_1}{V_2} \frac{\Delta T_{ad1}}{T_{ad2}} \frac{T_2}{T_1}$$

7.2.17 Temperature During Filling Period

$$T = T_{\rm o} \exp\left[\frac{(1-\chi_1)Q}{Q_{\rm o}}\right]$$

where

 χ_1 = heat-loss fraction from smoke to enclosure (dimensionless)

 T_{o} = ambient temperature (K)

Q = total heat release (kJ)

 $Q_{\rm o} = \rho_{\rm o} c_{\rm p} T_{\rm o} A (H-z) (\rm kJ)$

where A = cross-sectional area of atrium (m²)

 ρ_0 = density of ambient air (kg/m³)

 $c_{\rm p}$ = specific heat (kJ/kg-K)

 T_{o} = ambient temperature (K)

A = cross sectional area of atrium (m)

H =height of atrium (m)

Z = clear height, position of smoke layer interface above top of fuel surface (m)

7.2.18 Temperature Rise of Smoke Layer

$$\Delta T = \frac{(1 - \chi_1)\dot{Q}_c}{c_p \dot{m}}$$

where

 χ_1 = heat-loss fraction from smoke to enclosure (dimensionless)

 $\dot{Q}_{\rm c}$ = convection portion of heat-release rate (kW)

 \dot{m} = mass entrainment rate in plume (kg/s)

7.2.19 Species of Smoke

Smoke-Filling

$$\Upsilon_i = \frac{f_i Q}{\rho_o \chi_a H_c A (H-z)}$$

where

Q = total heat release (kJ)

 ρ_0 = density of ambient air (kg/m³)

- Υ_i = mass fraction of gas species *i*, in kg of species *i* per kg of smoke
- f_i = yield fraction of species *i*, in kg of species *i* per kg of fuel consumed
- χ_a = combustion efficiency (dimensionless)

 $H_{\rm c}$ = heat of combustion (kJ/kg)

A = cross-sectional area of atrium (m²)

- H = height of ceiling above top of fuel surface (m)
- z = clear height, position of smoke layer interface above top of fuel surface (m)

Vented

$$\Upsilon_i = \frac{f_i Q}{\dot{m} \chi_a H_c}$$

Q = total heat release (kJ)

 \dot{m} = mass entrainment rate in plume (kg/s) [all others per above]

7.2.20 Smoke Layer Temperature

$$T_{\rm s} = T_{\rm o} + \frac{k_{\rm s}Q_{\rm c}}{mc_{\rm p}}$$

where

- $T_{\rm s}$ = smoke layer temperature (°C)
- T_{o} = ambient temperature (°C)
- $k_{\rm s}$ = fraction of convective heat release contained in smoke layer; assume that

 $k_{\rm s} = 1.0$ unless another value is given

- \dot{Q}_{c} = convective portion of heat release rate (kW)
- $\dot{Q}_{\rm c}$ = convection portion of heat release rate (Btu/sec)
 - = 70% of \dot{Q} total = 0.7 \dot{Q}
- m = mass flow rate of the plume at elevation z, distance above the base of the fire (kg/s)

 $c_{\rm p}$ = specific heat of plume gases (1.0 kJ/kg•°C)

7.2.21 Vented Fire Smoke Layer Temperature Change

$$\Delta T = \frac{\left[60(1-x_1)\dot{Q}_{\rm c}\right]}{\rho_{\rm o}c_{\rm p}V}$$

where

- ΔT = temperature rise in smoke layer (°F)
- x_1 = total heat-loss factor from smoke layer to atrium boundaries (assume maximum temperature rise will occur, $\therefore x_1 = 0$)
- $\dot{Q}_{\rm c}$ = convective heat release rate (Btu/sec)
- \dot{Q}_{c} = convection portion of heat release rate (Btu/sec)
 - = 70% of \dot{Q} total = 0.7 \dot{Q}
- ρ_{o} = density of ambient air (0.075 lb/ft³)
- $c_{\rm p}$ = specific heat of plume gases (0.241 Btu/lb-°F)
- V = volumetric vent rate (ft³/min)

7.2.22 Smoke Flow Across an Opening/Pressurization

$$V = 776 CA \sqrt{\frac{2\Delta P}{\rho}}$$
 (English)

where

V = volumetric airflow rate (ft³/min)

C =flow coefficient (0.65)

A = flow area (also leakage area) (ft²)

 ΔP = pressure difference across flow path (in. H₂O)

 ρ = density of air entering the flow path (lb/ft³)

$$V = CA \sqrt{\frac{2\Delta P}{\rho}} \qquad (SI)$$

where

V = volumetric airflow rate (m³/s)

C =flow coefficient (0.65)

A = flow area (also leakage area) (m²)

 ΔP = pressure difference across flow path (Pa)

 ρ = density of air entering the flow path (kg/m³)

7.2.23 Flow Rate of Smoke Through a Vent

$$\frac{1}{2}\rho_{\rm o}\mu^2 = \Delta\rho g d$$

where

 ρ = density of smoke (kg/m³)

 ρ_o = density of ambient air (kg/m³)

 $\Delta \rho (kg/m^3) = \rho_o - \rho$

 $\dot{m} = \rho A_v u$

where

$$\dot{m}$$
 = mass flow rate through vent (kg/s)

$$A_{\rm v}$$
 = flow area of vent (m²)

 $g = \text{gravitational acceleration (9.8 m/s^2)}$

$$\dot{m} = \left(2\rho_{\rm o}^2 g\right)^{1/2} \left(\frac{T_{\rm o}\Delta T}{T^2}\right)^{1/2} A_{\rm v} d^{1/2}$$

Flow rate increases with smoke temperature and depth:

$$\dot{m} = \left(2\rho_{o}^{2}g\right)^{1/2} \left(\frac{T_{o}\Delta T}{T^{2}}\right)^{1/2} \frac{A_{v}d^{1/2}}{\sqrt{1 + \frac{C_{d}^{2}A_{v}^{2}T_{o}}{C_{d,i}^{2}A_{i}^{2}T_{o}}}}$$

where

 T_o = ambient air temperature (K)

T = gas temperature (K)

d =depth of smoke layer (m)

7.2.24 Vent Area

Effect of inlet pressure can replace A_{y} with effective vent area A_{y}^{*} :

$$\frac{1}{A_{v}^{*2}} = \frac{1}{A_{v}^{2}} + \frac{1}{A_{i}^{2}} \left(\frac{T_{o}}{T}\right)$$

Ratio of actual vent area to effective vent area, K:

$$K = \frac{A_{\rm v}}{A_{\rm v}^*} = \left[1 + \left(\frac{A_{\rm v}}{A_{\rm i}}\right)^2 \frac{T}{T_{\rm o}}\right]^{1/2}$$

7.3 Airflow

7.3.1 Airflow Rate for Pressure Differences – Barriers

$$V = K_{\rm f} A \sqrt{\Delta P}$$

where

V = airflow velocity (ft/min)

$$K_{\rm f} = \text{coefficient} (2,610)$$

$$A = \text{flow area}(\text{ft}^2)$$

 ΔP = pressure difference across flow path (in. H₂O)

7.3.2 Critical Airflow Velocity for Smoke Control

$$V_{\rm K} = K_{\rm V} \left(\frac{Q}{W}\right)^{1/3}$$

where

 $V_{\rm K}~=$ critical air velocity to prevent smoke backflow (ft/min or m/s)

Q = heat release rate into corridor (Btu/sec or kW)

W =corridor width (ft or m)

$$K_{\rm V}$$
 = coefficient (86.9 or 0.292)

7.3.3 Velocity Required for Opposed Airflow Above Smoke Layer Interface

$$v_{\rm e} = 38 \left[gH\left(\frac{T_{\rm f} - T_{\rm o}}{T_{\rm f}}\right) \right]^{1/2}$$

where

 $v_{\rm e}$ = limiting air velocity (ft/min)

 $g = \text{acceleration of gravity (32.2 ft/sec^2)}$

H = height of opening as measured from top of fuel surface (ft)

 $T_{\rm f}$ = temperature of heated smoke (°R)

$$T_{o}$$
 = temperature of ambient air (°R)

$$v_{\rm e} = 0.64 \left[gH\left(\frac{T_{\rm f} - T_{\rm o}}{T_{\rm f}}\right) \right]^{1/2}$$

where

 $v_{\rm e}$ = limiting air velocity (m/sec)

 $g = \text{acceleration of gravity (9.81 m/s^2)}$

H = height of opening as measured from top of fuel surface (m)

 $T_{\rm f}$ = temperature of heated smoke (K)

 T_{o} = temperature of ambient air (K)

7.3.4 Velocity Required for Opposed Airflow Below Smoke Layer Interface

$$v_{\rm e} = 17 \left(\frac{Q}{z}\right)^{1/3}$$

where

 $v_{\rm e}$ = limiting average air velocity (ft/min)

Q = heat-release rate of the fire (Btu/sec)

z = distance above the base of the fire to the bottom of the opening (ft)

$$v_{\rm e} = 0.057 \left(\frac{Q}{z}\right)^{1/3}$$

where

 $v_{\rm e}$ = limiting average air velocity (m/s)

Q = heat release rate of fire (kW)

z = distance above base of fire to bottom of opening (m)

7.3.5 Capacity Required for Opposed Airflow

Volumetric capacity of mechanical equipment required to deliver necessary velocity for opposed airflow

 $v_{oa} = A_o v_e$

where

 v_{oa} = volumetric flow rate (m³/s)

 $A_0 =$ cross-sectional area of opening (m²)

 $v_{\rm e}$ = limiting average air velocity (m/s)

7.3.6 Leakage Area

$$A_{\rm e} = \left(\frac{1}{A_{\rm sr}^2} + \frac{1}{A_{\rm ir}^2} + \frac{1}{A_{\rm io}^2}\right)^{-1/2}$$

where

 $A_{\rm sr}$ = leakage area between shaft and lobby (ft² or m²)

 $A_{\rm ir}$ = leakage area between building and lobby (ft² or m²)

 A_{io} = leakage area between building and outside (ft² or m²)

			Area Ratio		
Construction Element	Leakage	Leakage Area per Unit Wall Area			
		in ² /ft ²	ft²/ft²	m ² /m ²	
	Tight	7.2×10^{-3}	5.0×10^{-5}	5.0×10^{-5}	
Exterior Building Walls (includes construction	Average	2.5×10^{-2}	1.7×10^{-4}	1.7×10^{-4}	
cracks, cracks around windows and doors)	Loose	5.0×10^{-2}	3.5×10^{-4}	3.5×10^{-4}	
	Very loose	1.7×10^{-1}	1.2×10^{-3}	1.2×10^{-3}	
	Tight	2.0×10^{-3}	1.4×10^{-5}	1.4×10^{-5}	
Stairwell Walls (includes construction cracks but not cracks around windows or doors)	Average	1.6×10^{-2}	1.1×10^{-4}	1.1×10^{-4}	
	Loose	5.0×10^{-2}	3.5×10^{-4}	3.5×10^{-4}	
	Tight	2.6×10^{-2}	1.8×10^{-4}	1.8×10^{-4}	
Elevator Shaft Walls (includes construction cracks	Average	1.2×10^{-1}	8.4×10^{-4}	8.4×10^{-4}	
out not clacks around doors)	Loose	2.6×10^{-1}	1.8×10^{-3}	1.8×10^{-3}	
		Leakage Area per Unit Floor Area			
		in ² /ft ²	ft²/ft²	m^2/m^2	
	Tight	9.5×10^{-4}	6.6×10^{-6}	6.6 × 10 ⁻⁶	
Floors (includes construction cracks and gaps	Average	7.5×10^{-3}	5.2×10^{-5}	5.2×10^{-5}	
	Loose	2.4×10^{-2}	1.7×10^{-4}	1.7×10^{-4}	

Flow Areas of Walls and Floors of Commercial Buildings

Note: The data in this table are for use with the orifice equation with a flow coefficient of C = 0.65. Floor leakage does not account for gaps that sometimes exist between the floor and curtain walls.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

7.3.7 Limiting Average Velocity Through Communicating Space

$$v_e = 17 \left(\frac{Q}{z}\right)^{1/3}$$

where

 v_e = limiting air velocity (ft/min)

Q = heat release rate of fire (Btu/sec)

z = distance above the base of the fire to the bottom of the opening (ft)

7.3.8 Elevator Pressurization

Pressure Differences Criteria for Elevator Pressurization Simulations

System	Minir	num	Maximum	
System	in. H ₂ O	Pa	in. H ₂ O	Pa
Pressurized elevators	0.10	25	0.25	62
Pressurized stairwells	0.10	25	0.35	87

The above criteria are for the elevator simulations discussed in Chapter 11 of the *Handbook* of *Smoke Control Engineering*, and some projects may have different criteria depending on code requirements and requirements of specific applications.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Flow Poth	Dath Nama	Flow Coofficient	Flow Area	
r iow r atii	r atii Ivaine	Flow Coefficient	ft ²	m ²
Single door (closed)	DOOR-SC	0.65	0.25	0.023
Single door (opened)	DOOR-SO	0.35	21	2.0
Double door (closed)	DOOR-DC	0.65	0.48	0.045
Double door (opened)	DOOR-DO	0.35	42	3.9
Elevator door (closed)	DOOR-EC	0.65	0.65	0.06
Elevator door (opened)	DOOR-EO	0.65	6	0.56

Flow Areas and Flow Coefficients of Doors Used for Elevator Pressurization Simulations

The values in this table were chosen for the elevator simulations discussed in Chapter 11 of the Handbook of Smoke Control Engineering. The flow areas and flow coefficients appropriate for a design analysis of a specific building may be different.

The path name is an identifier used in the CONTAM simulations.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

7.3.8.1 Leakage Factors

· · · · · · · · · · · · · · · · · · ·						
Flow Dath	Lookago	Dath Nama	Flow	Flow Area		
riow ratii	Leakage	r atii Name	Coefficient	ft ² per ft ² of Wall	m ² per m ² of Wall	
	Tight	WALL-EXT	0.65	0.5 x 10 ⁻⁴	0.5 x 10 ⁻⁴	
Extenion wells	Average			0.17 x 10 ⁻³	0.17 x 10 ⁻³	
Exterior walls	Loose			0.35 x 10 ⁻³	0.35 x 10 ⁻³	
	Very loose			0.12 x 10 ⁻²	0.12 x 10 ⁻²	
Interior walls	Loose	WALL	0.65	0.35 x 10 ⁻³	0.35 x 10 ⁻³	
Floor (or roof)	Tight	FLOOR	0.65	0.66 x 10 ⁻⁵	0.66 x 10 ⁻⁵	
	Average			0.52 x 10 ⁻⁴	0.52 x 10 ⁻⁴	
	Loose			0.17 x 10 ⁻³	0.17 x 10 ⁻³	
ft ² per ft of wall m ² per m of wall			m ² per m of wall			
Curtain wall gap	Tight	FLOORW	0.65	0.002	0.00061	
	Loose			0.02	0.0061	

Flow Areas and Flow Coefficients of Leakages Used for Elevator Pressurization Simulations

The values in this table were chosen for the elevator simulations discussed in Chapter 11 of the *Handbook of Smoke Control Engineering*. The flow areas and flow coefficients appropriate for a design analysis of a specific building may be different. The path name is an identifier used in the CONTAM simulations.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

7.3.9 Elevator Piston Effect for Elevators

$$\Delta p_{u,ir} = \frac{1.66 \times 10^{-6} \rho}{2} \left(\frac{A_s A_e U}{A_a A_{ir} C_c} \right)^2$$
$$\Delta p_{u,ir} = \frac{\rho}{2} \left(\frac{A_s A_e U}{A_a A_{ir} C_c} \right)^2 \text{ for SI units}$$

where

 $\Delta p_{u,ir}$ = upper limit pressure difference from shaft to building (in. H₂O or Pa)

 ρ = air density in hoistway (lb/ft³ or kg/m³)

 $A_{\rm S}$ = cross-sectional area of shaft (ft² or m²)

 A_{ir} = leakage area between building and lobby (ft² or m²)

 A_a = free area around elevator car (ft² or m²)

 $A_{\rm e} = {\rm effective area} \, ({\rm ft}^2 \, {\rm or} \, {\rm m}^2)$

U = elevator car velocity (ft/min or m/s)

 $C_{\rm c}$ = flow coefficient for flow around car (dimensionless)

 $C_{\rm c}$ was determined experimentally to be 0.94 for multiple car hoistways and 0.83 for a single car hoistway. The free area around the elevator car is the cross-sectional area of the shaft minus the cross-sectional area of the car.

7.3.10 Stairwell Pressurization

$$\Delta P_{\rm SB} = \Delta P_{\rm SBb} + \frac{by}{1 + \left(\frac{A_{\rm SB}}{A_{\rm BO}}\right)^2}$$

where

 $\Delta P_{SB} = P =$ pressure difference between stairwell and building (in. H₂O) (92A T5.2.1.1)

 $\Delta P_{\text{SBb}} = S = \text{pressure difference between stairwell and building at bottom of stairwell (in. H₂O)$

 $A_{\rm SB} = A =$ flow area between stairwell and building (ft²)

 $A_{\rm BO} = O =$ flow area between building and outside (ft²)

y = Y = distance above stairwell bottom (ft)

$$b = K_{\rm s} \left(\frac{1}{T_{\rm O}} - \frac{1}{T_{\rm S}} \right)$$

where

b = B = temperature factor (in. H₂O/ft)

 $K_{\rm s} = K = 7.64$

 $T_{\rm O} = T =$ absolute temperature of outside air (°R)

 $T_{\rm S} = S$ = absolute temperature of stairwell air (°R)

$$Q = K_{\rm q} \frac{NA_{\rm SB}}{\sqrt{\rho}} \left(\frac{\Delta P_{\rm SBt}^{3/2} - \Delta P_{\rm SBb}^{3/2}}{\Delta P_{\rm SBt} - \Delta P_{\rm SBb}} \right)$$

where

Q = flow rate of pressurization air (ft³/min)

N = number of floors

 $A_{\rm SB} = A =$ flow area between stairwell and building (ft²)

 $\rho = P = \text{density of air } (0.075 \text{ lb/ft}^3)$

 $\Delta P_{\text{SBb}} = B = \text{pressure difference at bottom of stairwell (in. H₂O)}$

 $\Delta P_{\rm SBt} = T =$ pressure difference at top of stairwell (in. H₂O) $K_{\rm q} = 475$

Orifice equation for analysis of pressurization smoke control systems:

$$m = 12.9CA\sqrt{2\rho\Delta p}$$
$$m = CA\sqrt{2\rho\Delta p} \text{ for SI units}$$

Orifice equation for standard atmospheric pressure and mass flow at 70°F (21°C):

$$m_{\rm sv} = 2,610 \ CA \sqrt{\Delta p}$$

 $m_{\rm sv} = 0.839 \ CA \sqrt{\Delta p}$ for SI units

where

m = mass flow through the path (lb/sec or kg/s)

$$m_{\rm sv}$$
 = mass flow through the path (scfm or standard m³/s)

C = flow coefficient (dimensionless)

- A = flow area (or leakage area) (ft² or m²)
- Δp = pressure difference across path (in. H₂O or Pa)
 - ρ = gas density in flow path (lb/ft³ or kg/m³)

Orifice equation in terms of volumetric flow:

$$V = 776 CA \sqrt{\frac{2\Delta p}{\rho}}$$
$$V = CA \sqrt{\frac{2\Delta p}{\rho}} \text{ for SI units}$$

where V = volumetric flow through the path (cfm or m³/s)

7.3.11 Stairwell Pressurization Height Limitation

$$H_{\rm m} = K_{\rm m} \frac{\Delta p_{\rm max} - \Delta p_{\rm min}}{\left(\frac{1}{T_{\rm O}} - \frac{1}{T_{\rm B}}\right)} \left[1 + \left(\frac{A_{\rm SB}}{A_{\rm SO}}\right)^2\right]$$

where

$$H_{\rm m}$$
 = height limit (ft)

 Δp_{max} = maximum allowable pressure difference between stairwell and building (in. H₂O)

 Δp_{\min} = minimum allowable pressure difference between stairwell and building (in. H₂O)

 $T_{\rm O}$ = absolute temperature of outside air (°R)

 $T_{\rm B}$ = absolute temperature of building air (°R)

- $A_{\rm SB}$ = flow area between stairwell and building (ft²)
- $A_{\rm SO}$ = flow area between building and outside (ft²)

$$K_{\rm m} = 0.131$$

$$H_{\rm m} = 0.131 \frac{F_{\rm R} \left(\Delta p_{\rm max} - \Delta p_{\rm min}\right)}{\left|\frac{1}{T_{\rm o} + 460} - \frac{1}{T_{\rm s} + 460}\right|}$$
$$H_{\rm m} = 2.89 \times 10^{-4} \frac{F_{\rm R} \left(\Delta p_{\rm max} - \Delta p_{\rm min}\right)}{\left|\frac{1}{T_{\rm o} + 273} - \frac{1}{T_{\rm s} + 273}\right|} \text{ for SI units}$$

where

 $H_{\rm m}$ = height limit (ft or m)

 $F_{\rm R}$ = flow area factor (dimensionless)

 Δp_{max} = maximum design pressure difference (in. H₂O or Pa)

 Δp_{\min} = minimum design pressure difference (in. H₂O or Pa)

Flow Area Factor

$$F_{\rm R} = 1 + \frac{A_{\rm SB}^2 (T_{\rm B} + 460)}{A_{\rm BO}^2 (T_{\rm S} + 460)}$$
$$F_{\rm R} = 1 + \frac{A_{\rm SB}^2 (T_{\rm B} + 273)}{A_{\rm BO}^2 (T_{\rm S} + 273)} \text{ for SI units}$$

where

- $A_{\rm SB}$ = flow area between stairwell and building (ft² or m²)
- $A_{\rm BO}$ = flow area per stairwell between building and outside (ft² or m²)

 $T_{\rm S}$ = temperature in stairwell (°F or °C)

 $T_{\rm B}$ = temperature in building (°F or °C)

8 HAZARDOUS MATERIALS

8.1 Flammability

Flammable describes any solid, liquid, vapor, or gas that will ignite easily and burn rapidly. A flammable liquid is defined by NFPA and USDOT as a liquid with a flash point below 100°F (38°C). Flammability limits are given by volume % in air.

8.1.1 Lower Flammable Limit

$$LFL = \frac{V_{LFL}}{0.147}$$

where

LFL = lower flammable limit

 $V_{\rm LFL}$ = vapor pressure of liquid at its LFL (psia)

$$LFL = \frac{V_{LFL}}{1.01}$$

where

LFL = lower flammable limit

 $V_{\rm LFL}$ = vapor pressure of liquid at its LFL (kPa)

$$LFL = \frac{100V}{P}$$

where

LFL = lower flammable limit

V = vapor pressure of liquid at its LFL at ambient pressure

P = ambient pressure

8.1.1.1 Lower Flammable Limit Concentration of a Fuel Mixture

$$LFL_{m} = \frac{100}{\sum_{i=1}^{n} \left(\frac{C_{f_{i}}}{LFL_{i}}\right)}$$

where

 $C_{\rm f}$ = volume percent of fuel gas *i* in fuel gas mixture

 $LFL_i = lower flammable limit of fuel gas i$

8.1.2 Flammable Vapor Concentrations (Le Chatelier's Rule)

$$LFL_{mix} = \frac{1}{\sum_{j=1} \left(\frac{\chi_j}{LFL_j} \right)}$$

where

 χ_i = molar concentration of fuel gas *j* in fuel mixture

 $LFL_i = lower flammable limit of gas or vapor j$

8.1.3 Flammable Vapor Concentrations

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

8.1.4 Volume of Vapor Production from Liquid

(Source: NFPA Fire Protection Handbook, 20th ed., Section 6, Ch 12, p. 6-202.

Reproduced with permission of NFPA®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

To calculate the volume of vapor produced by solvent:

English units: *Vapor equivalent of 1 gal* = $111 \times \frac{\text{specific gravity of liquid}}{\text{vapor density of vapor}}$

Metric units: Vapor equivalent of 1 liter = $0.83 \times \frac{\text{specific gravity of liquid}}{\text{vapor density of vapor}}$

8.1.5 Volume of Air Required to Maintain Lower Flammable Limit

(Source: NFPA Fire Protection Handbook, 20th ed., Section 6, Ch 12, p. 6-202.

Reproduced with permission of NFP®A®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

English units: Volume of air required = $\frac{ft^3 \text{ barely explosive mixture}}{gal \text{ of solvent}} = \left(\frac{ft^3 \text{ mixture}}{gal \text{ solvent}}\right) \left(\frac{100 - LEL_T}{LEL_T}\right)$ Metric units: Volume of air required = $\frac{m^3 \text{ barely explosive mixture}}{L \text{ of solvent}} = \left(\frac{m^3 \text{ mixture}}{L \text{ solvent}}\right) \left(\frac{100 - LEL_T}{LEL_T}\right)$

where

 LEL_T = lower explosive limit expressed in percent by volume in air, corrected for temperature other than STP

8.1.6 Aerosols

(Source: NFPA *Fire Protection Handbook*, 20th ed., Section 6, Ch 16, p. 6-259. Reproduced with permission of NFP A®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

Aerosol classification levels are based on the total chemical heat of combustion (ΔH_c) and are

Level 1 = total chemical heat of combustion equal to or less than 8,600 Btu/lb or 20 kJ/g

Level 2 = total chemical heat of combustion greater than 8,600 Btu/lb or 20 kJ/g, and less than or equal to 13,000 Btu/lb or 30 kJ/g

Level 3 = total chemical heat of combustion greater than 13,000 Btu/lb or 30 kJ/g

Total heat of combustion is determined by summing the products of the component percentage and the component heat of combustion:

Total
$$\Delta H_{\rm c} = \sum (\Delta H_{\rm c} \times \% \text{ volume})$$

8.2 Vapor Clouds

8.2.1 Spill Rate—Dispenser

A valve remaining unintentionally open would spill liquid on the ground at a rate determined by a pump or by the pipe system upstream of the valve.

8.2.2 Spill Rate—Pressurized Liquid

Use the orifice-flow equation:

$$\dot{m} = CA\sqrt{2\rho(P_1 - P_a + \rho gh)}$$

where

- \dot{m} = vapor source mass flow rate (kg/s)
- ρ = liquid density (kg/m³)
- P_1 = pressure of liquid (Pa)
- P_a = ambient pressure (Pa)
- $A = \text{area of orifice opening } (m^2)$

- h = elevation of liquid above orifice (m)
- C = discharge coefficient (assumed to be ~0.60)
- $g = \text{acceleration due to gravity (9.81 m/s^2)}$

8.2.3 Spill Area and Thickness

Assume the liquid spreads instantaneously either to cover the entire containment area or to reach the minimum pool thickness (when the spill is uncontained). In most applications, the surface roughness of the concrete or soil where the liquid has spilled dominates the surface tension effects. Examples of minimum pool heights are

Substrate	Minimum Pool Height (h_{\min})
Dry soil	2 cm (0.8 in)
Wet soil	1 cm (0.4 in)
Concrete	0.5 cm (0.2 in)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

8.3 Explosions

Protection from explosions that produce shock waves (detonations, waves traveling at or above the speed of sound) must be handled differently than explosions producing slower-pressure waves (deflagrations).

8.3.1 Pressure Damage Thresholds

Pressure Damage Thresholds for Buildings

Pressure (kPa)	Damage Description	
3.5–7	Small and large windows usually shattered	
7–15	Wood and aluminum panel fasteners failed; panels buckled or blown out	
15-20	Unreinforced concrete and cinderblock walls shattered	
20	Steel frame buildings distorted and pulled away from foundations	
20–28	Self-framing steel panel building demolished	
35-50	Nearly complete destruction of houses	

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

	_
Pressure (kPa)	Type of Damage
0.1–0.3	Minimum damage to glass panels
1–1.5	Typical window glass breakage
3.5–7.5	Windows shattered, plaster cracked, minor damage to buildings
5	Brick walls – minor damage
7–10	Person knocked down
7–15	Wood and aluminum panels fasteners failed; panels buckled or blown out
7.5–12.5	Panels of sheet metal buckled
7.5–15	Failure of wooden siding in conventional homes
12.5–20	Failure of walls constructed of concrete blocks or cinder blocks
14	Brick walls – major damage
15–20	Unreinforced concrete and cinderblock walls shattered
20	Steel frame buildings distorted and pulled away from foundation
20–28	Self-framing steel panel building demolished
20–30	Oil storage tanks ruptured
20-31	Wood frame buildings collapsed
27	Cladding of light industrial buildings ruptured
30–50	Utility poles broken off
30–50	Serious damage to buildings with structural steel framework
35–50	Nearly complete destruction of houses
40–60	Reinforced concrete structures severely damaged
40–60	Railroad cars overturned
200–500	Probable total destruction of most buildings
205	Steel towers blown down
606	Crater damage

Blast Damage—Overpressure Correlation

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

8.3.2 Blast Wave Energy

 $E = \alpha \Delta H_{\rm c} m_{\rm F}$

where

E =blast wave energy (kJ)

 α = yield fraction of available combustion energy participating in blast wave generation (conservative value is 0.5)

 $\Delta H_{\rm c}$ = theoretical net heat of combustion (kJ/kg)

 $m_{\rm F}$ = mass of flammable vapor released (kg)

8.3.3 TNT Mass Equivalent

W

$$E_{\rm TNT} = \frac{E}{4.200}$$

where

 $W_{\rm TNT}$ = equivalent weight of TNT (kg)

E = blast wave energy (kJ)

1 kg TNT has an explosive energy of 4,200 (kJ/kg)

8.3.4 Blast Wave Energy of a BLEVE

A boiling-liquid expanding-vapor explosion (BLEVE) is defined as

 $E = m(u_{\rm r} - u_{\rm a})$

where

E =blast wave energy (kJ)

m = mass of liquid in vessel (kg)

 u_r = internal energy (per unit mass) of liquid at rupture (kJ/kg)

 u_a = internal energy (per unit mass) of vapor after expansion (kJ/kg)

8.3.5 Fireball Size and Dynamics—Originating from a BLEVE

The maximum size of a fireball is governed primarily by the mass of the fuel released and vaporized. Although the fireballs are rarely spherical, an equivalent spherical volume is widely used to characterize the size of a fireball. The maximum diameter of the equivalent spherical fireball is given by

 $D = 5.8 \ m^{1/3}$

where

D = maximum diameter (m)

m = mass of fuel (kg)

The maximum fireball diameter is independent of the initial pressure of the fuel, as long as the pressure and temperature are sufficient to vaporize the fuel.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

8.3.6 Burning Duration of a Fireball—Originating from a BLEVE

8.3.6.1 For Momentum-Dominated Fireballs

 $t_{\rm d} = 0.45 \ m^{1/3}$

where

 $t_{\rm d}$ = duration of burning (s)

m = mass of fuel (kg) (< 30,000 kg)
8.3.6.2 For Buoyancy-Dominated Fireballs

As would be expected, for atmospheric pressure releases:

$$t_{\rm d} = 2.6 \ m^{1/6}$$

where

 $t_{\rm d}$ = duration of burning (s)

m = mass of fuel (kg) (> 30,000 kg)

8.3.7 Time to Fireball Liftoff

The time to fireball liftoff is given by

$$t_{e} = 1.1 \ m^{1/6}$$

where

 $t_{\rm e}$ = time to liftoff (s)

m = mass of fuel (kg)

8.3.8 Fireball Exposure to Target (Point Source Method)

$$Z_{\rm p} = 12.73 V_{\rm va}^{1/3}$$
$$q_{\rm max} = \frac{828 m^{0.771}}{R^2}$$

where

 Z_{p} = rise of **center** of fireball above tank (m)

 $V_{\rm va}$ = fuel vapor volume (m³)

 q_{max} = peak thermal radiation from fireball (kW/m²)

m = mass of fuel (kg)

R = distance from center of fireball to target (m)

8.3.9 Minimum Required Explosion Vent Area

$$A_{\rm v} = 1 \times 10^{-4} \left(1 + 1.54 P_{\rm stat}^{4/3}\right) K_{\rm ST} V^{3/4} \sqrt{\frac{P_{\rm max}}{P_{\rm red}} - 1}$$

where

 K_{ST} = deflagration index (bar m/s)

 P_{max} = maximum explosion pressure (bar g)

- P_{stat} = vent deployment pressure, in bar g, in response to slowly increasing (static) pressure
 - $V = \text{enclosure volume (m}^3)$

 $P_{\rm red}$ = reduced pressure (less than $P_{\rm max}$) in enclosure because of venting (bar g)

NFPA 68, Standard on Explosion Protection by Deflagration Venting, specifies that the value of P_{red} shall be no greater than 2/3 the enclosure strength based either on incipient permanent deformation or actual enclosure (structural member) rupture, at the discretion of the facility owner.

This equation is applicable to compact enclosure with $\frac{L}{D} \leq 2$, and lightweight vent disks/panels.

8.4 Explosion Venting

8.4.1 Minimum P_{red} for Nonrelieving Wall Construction

Minimum $P_{red} = P_{stat} + 0.024$ bar (or 50 psf or 0.35 psig)

 P_{stat} = vent deployment pressure, in bar g, in response to slowly increasing (static) pressure

 $P_{\rm red}$ = reduced pressure (less than $P_{\rm max}$) in enclosure because of venting (bar g)

8.4.2 Vent Area for Low-Strength Enclosures

Minimum recommended vent area for venting of low-strength enclosures from gases, gas mixtures, and mists:

$$A_{\rm v} = \frac{C(A_{\rm s})}{\left(P_{\rm red}\right)^{1/2}}$$

where

 $A_{\rm v}$ = minimum vent area (ft²)

C = fuel constant or venting parameter (psi^{1/2}) (found in NFPA 68, 7.2.2.1)

 $A_{\rm s}$ = internal surface area of enclosure including floor, roof, and all walls (ft²)

 $P_{\rm red}$ = maximum pressure to be attained during vented deflagration (psi)

C = venting equation constant, given as a function of laminar burning velocity for different gases (bar^{1/2} or psi^{1/2})

For psi^{1/2}:
$$C = (6.1 \times 10^{-5})(S_u^2) + (6.1 \times 10^{-4})(S_u) + 0.0416$$

For bar^{1/2}: $C = (1.57 \times 10^{-5})(S_u^2) + (1.57 \times 10^{-4})(S_u) + 0.0109$

where S_u = fuel fundamental burning velocity (cm/s) (must be less than 60 cm/s)

8.4.3 Vent Area for High-Strength Enclosures

(Source: NFPA 68, Standard on Explosion Protection by Deflagration Venting, Section 7.3.

Reproduced with permission of NFPA®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

$$D = 2\left(\frac{A^*}{\pi}\right)^{1/2}$$

where

D = equivalent diameter (ft)

 $A^* =$ cross-sectional area normal to the longest dimension (ft²)

 $\frac{L}{D}$ ratio

D = equivalent diameter (m)

L = maximum distance between adjacent vent edges (m)

For
$$\frac{L}{D} \le 2$$
 and volume $\le 1,000 \text{ m}^3$:
 $A_v = \left[\left(0.127 \log_{10} K_{\text{G}} - 0.0567 \right) P_{\text{red}}^{-0.582} + 0.175 P_{\text{red}}^{-0.572} \left(P_{\text{stat}} - 0.1 \right) \right] V^{2/3}$

where

 $A_{v} = A = \text{vent area} (\text{m}^2)$

 $K_{\rm G} = K =$ deflagration index of gas (bar•m/s) ≤ 550

 $P_{\text{red}} = R = 2$ bar and at least 0.05 bar greater than P_{sta}

 $P_{\text{stat}} = S \le 0.5 \text{ bar}$

 $V = \text{enclosure volume (m}^3)$

For $2 > \frac{L}{D} < 5$, and $P_{\text{red}} \le 2.0$ bar, additional vent area must be added to A_{v} :

$$\Delta A = \frac{A_{\rm v} K_{\rm G} \left[\left(\frac{L}{D} \right) - 2 \right]^2}{750}$$

Final $A_v = \Delta A + A_v$

8.4.4 Vent Area Threshold Mass

(Source: NFPA 68, Standard on Explosion Protection by Deflagration Venting, Equation 8.2.7.2.

Reproduced with permission of NFPA®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

$$M_{\rm T} = \left[6.67 \left(P_{\rm red}^{0.2} \right) \left(n^{0.3} \right) \left(\frac{V}{K_{\rm st}^{0.5}} \right) \right]^{1.67}$$

where

 $M_{\rm T}$ = threshold mass (kg/m²)

 $P_{\rm red}$ = reduced pressure after deflagration (bar)

n = number of panels

 $V = \text{enclosure volume (m}^3)$

 $K_{\rm st}$ = deflagration index (bar•m/s)

8.4.5 Venting One End of Elongated Enclosure

(Source: NFPA 68, Standard on Explosion Protection by Deflagration Venting, Sections 7.2.3.3 and 7.2.3.4. Reproduced with permission of NFPA®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

 $L_3 \le 12\frac{A}{p}$

where

 L_3 = longest dimension of the enclosure (ft)

A =cross-sectional area through which burning mixture must vent (ft²)

p = perimeter of that cross section (ft)

For highly turbulent gas mixtures, the length-to-diameter ratio should not exceed 2:

$$L_3 \leq 8\frac{A}{p}$$

8.4.6 Effects of Vent Ducts (Cubical Vessels)

$$\frac{P_{\rm red}^{"}}{P_{\rm red}} = 1 + \left[17.3 \left(\frac{A_{\rm v}}{V^{0.753}} \right)^{1.6} \frac{L}{D} \right]$$

where

 $P_{\text{red}}^{"} = P = \text{pressure during a vented deflagration with vent duct in place (bar)}$

 $P_{\rm red} = R =$ pressure during a vented deflagration without vent duct (bar)

 $A_{\rm v} = A = \text{vent area} (\text{m}^2)$

 $V = \text{enclosure volume (m}^3)$

L = duct length (m)

D = equivalent diameter of vent duct (m)

8.4.7 Venting of Deflagrations of Dusts and Hybrid Mixtures

(Source: NFPA 68, Standard on Explosion Protection by Deflagration Venting, Section 8.2.2.

Reproduced with permission of NFPA®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

$$A_{v0} = 0.0001 \left(1 + 1.54 P_{\text{stat}}^{4/3}\right) K_{\text{st}} V^{3/4} \sqrt{\frac{P_{\text{max}}}{P_{\text{red}}} - 1}$$

where

 A_{v0} = vent area (m²)

 P_{stat} = nominal static burst pressure of vent (bar)

 $K_{\rm st}$ = deflagration index (bar•m/s)

- $V = \text{enclosure volume (m^3)}$
- P_{max} = maximum pressure of deflagration (bar)
- $P_{\rm red}$ = reduced pressure after deflagration (bar)

Equation is valid for:

- 1. 5 bar $\leq P_{\text{max}} \leq 12$ bar
- 2. 10 bar•m/s $\leq K_{st} \leq 800$ bar•m/s
- 3. $0.1 \text{ m}^3 \le V \le 10,000 \text{ m}^3$
- 4. $P_{\text{stat}} \leq 0.75$ bar

See Section 8.4.3 for $\frac{L}{D}$ ratio When $\frac{L}{D} \le 2$, A_{v1} shall be set equal to A_{v0} . For $2 \le \frac{L}{D} \le 6$, A_{v1} shall be calculated as: $A_{v1} = A_{v0} \left[1 + 0.6 \left(\frac{L}{D} - 2 \right)^{0.75} \exp(-0.95 P_{red}^2) \right]$

8.4.8 Partial Volume Deflagrations (PVDs)

(Source: NFPA 68, Standard on Explosion Protection by Deflagration Venting, Section 8.3.

Reproduced with permission of NFPA®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

$$A_{\rm vpv} = A_{\rm v0} X_{\rm r}^{-1/3} \left(\frac{\left(X_{\rm r} - \frac{P_{\rm red}}{P_{\rm max}} \right)}{\left(1 - \frac{P_{\rm red}}{P_{\rm max}} \right)} \right)^{1/2}$$

where

 $A_{\rm vpv}$ = required vent area for PVD (m²)

 A_{v0} = required vent area for entire enclosure if filled with ignitable mixture (m²)

 $X_{\rm r}$ = fill fraction at the time of PVD

 P_{max} = maximum pressure of deflagration (bar)

 $P_{\rm red}$ = reduced pressure after deflagration (bar)

$$\Pi = \frac{P_{\text{red}}}{P_{\text{max}}}$$

8.4.9 Deflagration Index

The deflagration index, K, is computed from the maximum rate of pressure rise attained by combustion in a closed vessel with volume, V, and is defined by

$$K = \left(\frac{dP}{dT}\right)_{\max} \times V^{1/3}$$

8.5 Dusts

8.5.1 Flammability of Dusts

(Source: NFPA Fire Protection Handbook 20th ed., p. 6-147.

Reproduced with permission of NFPA®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

The flammability of dust can be defined with six classes:

Class 1: No self-sustained combustion

Class 2: Local combustion of a short duration

Class 3: Local sustained combustion but no propagation

Class 4: Propagating, smoldering combustion

Class 5: Propagating open flame

Class 6: Explosive combustion

The class is determined through testing. A sample of the dust (a ridge 2 cm wide \times 4 cm long) is ignited at one end with a 1,000°C gas flame or platinum wire (glowing). The class number relates to a modified test procedure. With the modified test, material may show flame propagation instead of melting due to the mixing of dust with diatomaceous earth (20% by weight).

8.5.2 Ignition Sensitivity

(Source: NFPA Fire Protection Handbook, 20th ed.

Reproduced with permission of NFPA®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

The ignition sensitivity and explosion severity of a dust are defined as

$$IS = \frac{(T_i \times E_m \times C_m)_{Pittsburgh coal dust}}{(T_i \times E_m \times C_m)_{sample dust}}$$
$$ES = \frac{(P_{max} \times R_{max})_{sample dust}}{(P_{max} \times R_{max})_{Pittsburgh coal dust}}$$

where

 T_i = ignition temperature of dust cloud

 $E_{\rm m}$ = minimum ignition energy of dust cloud

 $C_{\rm m}$ = minimum concentration for combustible dust cloud

 $P_{\rm max}$ = maximum explosion pressure

 R_{max} = maximum rate of pressure rise in test apparatus

8.5.3	Explosibility	of	Data	Powders	and	Dusts
-------	---------------	----	------	---------	-----	-------

Material	Median particle size (µm)	Min. explosive concentration (g/m ³)	Min. cloud ignition temperature (°C)	Min. layer ignition temperature (°C)	Minimum ignition energy (mJ)	P _{max} (bar∙m)	K _{st} (bar∙m/s)
Activated carbon	18	60	790	>450	-	8.8	44
Aluminum powder	<10	60	560	430	-	11.2	515
Aluminum shavings	240	No ignition					
Ascorbic acid	39	60	460	melts	-	9.0	111
Calcium stearate	<10	30	580	>450	16	9.2	99
Coal, bituminous	4	60	510	260	-	9.1	59
Corn starch	<10	-	520	>450	300	10.2	128
Epoxy resin	26	30	510	melts	-	7.9	129
Fructose	200	60	440	440	180	7.0	28
Iron from filter	12	500	580	>450	-	5.2	50
Magnesium	28	30	-	-	-	17.5	508
Methyl cellulose	37	30	410	450	29	10.1	209
Milk powder	165	60	460	330	75	8.1	90
Napthalene	95	15	660	>450	<1	8.5	178
Paper tissue dust	54	30	540	300	-	8.6	52
Phenolic resin	<10	15	610	>450	-	9.3	129
Polyethylene, 1.d.	<10	30	420	melts	-	8.0	156
Polyethylene, 1.d.	150	125	480	melts	-	7.4	54
Polyvinylchloride	25	125	750	>450	-	9.3	129
Rubber	80	30	500	230	13	8.5	138
Silicon	<10	125	>850	>450	54	10.2	126
Sugar	10	60	440	melts	14	8.3	75
Sulfur	20	30	280	-	6.8	151	
Toner	23	60	530	melts	8	8.8	145
Wood from chip board	43	60	490	320	-	9.2	102
Zinc	<10	250	570	440	-	6.7	125

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

8.5.4 Fireball Hazard

$$D = K \left(\frac{V}{n}\right)^{1/3}$$

where

D = axial distance (front) from vent (ft or m) and diameter of fireball at that distance

K = flame length factor: 10 for metal dusts, 8 for agricultural dusts

V = volume of vented enclosure (m³ or ft³)

n = number of vents

9 PASSIVE BUILDING SYSTEMS

9.1 General

During the course of a fire, structures must maintain their integrity for a sufficient period of time to allow for evacuation and firefighting operations. In performance-based codes, these goals are defined by estimated time for evacuation and firefighting operations based on one or more selected design fires for the occupancy.

9.1.1 Fire Load

Fire load is a measure of the maximum heat release if all the combustibles in a defined area burn to completion. This load is determined by multiplying the mass of each combustible with the heat of combustion. Fire load includes combustible contents, interior finish, floor finish, and structural elements and is generally expressed in lb/ft^2 or kg/m².

9.1.2 Analytical Method for Fire Resistance

A broad-based analytical method for fire resistance will consider three aspects:

- 1. Fire exposure
- 2. Heat transfer
- 3. Structural response

The two most important fire effects that alter a structure's resistance from that at ambient are the high-temperature degradation of its mechanical properties (strength and stiffness) and thermally induced strains. These cause softening, weakening, and damage to even noncombustible construction materials and directly lead to a progressive reduction of load-carrying resistance at higher temperatures. Meanwhile, fire-induced thermal elongations can

- 1. Lead to displacements so large that they influence the effects of action (a term used to designate bending moments, axial forces, or shear forces) in the structure, or
- 2. When restrained, generate additional effects of action, typically in the form of compressive forces

These dual responses demonstrate that fire is clearly time-dependent with effects on both the load and the resistance sides of the equation for strength limit. Similar to the real-time history response of a structure subjected to an earthquake, load-resistance interactions exist that usually give rise to nonlinear structural behavior and permanent distortions/damage.

Factors to be considered and evaluated in a structural analysis:

- Local member or frame instability
- Floor slab effects
- Thermal strains
- Tensile membrane action of composite floors
- Connection moment-rotation behavior
- Nonuniform heating
- Material strength limit states

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.1.3 Fire Endurance Rules—Harmathy's Ten Rules of Fire Endurance

In all figures t represents time in no particular units.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.1.4 Time-Temperature Curve—General

ASTM E119 Standard Fire and Real Fire Time-Temperature Curves Source: SFPE *Handbook of Fire Protection Engineering*, fifth edition, with permission from SFPE.

9.1.5 ASTM E119

9.1.5.1 ASTM E119 Time-Temperature Curve

9.1.5.2 Key Points on the Standard Time-Temperature Curve

From the ASTM E119 standard time-temperature curve:

Time	Temperature (°F)
5 minutes	1,000
10 minutes	1,300
30 minutes	1,550
1 hour	1,700
2 hours	1,850
4 hours	2,000
8 hours & over	2,300

9.1.5.3 ASTM E119 Test Endpoint Criteria

Structural Member	Location	Maximum Temperature °F (°C)	
Walls/partitions (bearing and nonbearing)	Unexposed side		
	Average	250 (139) ^a	
	Single point	325 (181) ^a	
Steel columns	Average	1,000 (538)	
	Single point	1,200 (649)	
Floor/roof assemblies and loaded beams	Unexposed side		
	Average	250 (139) ^a	
	Single point	325 (181) ^a	
	Steel bear	n	
	Average	1,100 (593)	
	Single point	1,300 (704)	
	Prestressing steel	800 (426)	
	Reinforcing steel	1,100 (593)	
	Open-web steel joists	1,100 (593)	
Steel beams/girders (not loaded)	Average	1,000 (538)	
	Single point	1,200 (649)	

^a Maximum temperature cited refers to maximum temperature rise about initial conditions.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.1.6 Flame Spread Index Per ASTM E-84

	Class A	Class B	Class C
Flame spread index	0–25	26-75	76–200
Smoke development index	0-450	0-450	0-450

9.2 Steel

The following types of calculation methods are available to assess the fire resistance of steel structural members:

- 1. Empirical correlations
- 2. Heat-transfer analyses
- 3. Structural analyses

The principal material properties of interest are yield strength, ultimate strength, modulus of elasticity, coefficient of thermal expansion, density, specific heat, and thermal conductivity.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.2.1 Yield Strength

Fo

r 0 < T ≤ 600°C:

$$\sigma_{yT} = 1 + \frac{T}{900 \ln(\frac{T}{1,750})} \sigma_{y0}$$

 $E_T = 1 + \frac{T}{2,000 \ln(\frac{T}{1,100})} E_0$

For $T > 600^{\circ}$ C:

$$\sigma_{yT} = \frac{340 - 0.34T}{T - 240} \sigma_{y0}$$
$$E_T = \frac{690 - 0.69T}{T - 53.5} E_0$$

For any temperature:

$$\alpha_T = (0.04T + 12) \times 10^{-6}$$

where

 σ_{vT} = yield strength temperature *T* (psi or MPa)

 σ_{v0} = yield strength at 68°F or 20°C (psi or MPa)

- E_T = modulus of elasticity at temperature T (psi or MPa)
- $E_0 =$ modulus of elasticity at 68°F or 20°C (psi or MPa)
- α_T = coefficient of thermal expansion at temperature *T* (ft/ft °F or m/m °C)

T = steel temperature (°F or °C)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.2.3 Insulation of Steel Members

Insulation of steel is achieved by surrounding the steel with materials that preferably have the following characteristics:

- 1. Noncombustibility and the added attribute of not producing smoke or toxic gases when subjected to elevated temperatures
- 2. Thermal protective capability when subjected to elevated temperatures
- 3. Product reliability giving positive assurance of consistent, uniform protection characteristics
- 4. Availability in a form that permits efficient and uniform application
- 5. Sufficient bond strength and durability to prevent either dislodgement or surface damage during normal construction operations
- 6. Resistance to weathering or erosion resulting from atmospheric conditions

In addition to the insulating qualities of the protection materials, chemical reactions may occur in the insulation, further reducing the rate of heat transfer. The chemical reactions include calcination, ablation, intumescence, thermal hydrogeneration, and sublimation. Insulating methods include the use of board products, spray-applied materials, and concrete encasement.

9.2.4 Heated Perimeter (D) for Steel Columns

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.2.5 Fire Endurance Equations for Steel Columns

Member/Protection	Solution	Symbols
	$R = 10.3 (W/D)^{0.7}$, for $W/D < 10$	R = fire endurance time (min)
Column/unprotected	$R = 8.3 \ (W/D)^{0.8}$, for $W/D \ge 10$	W = weight of steel section per linear foot (lb/ft)
	(for critical temperature of 1,000°F)	D = heated perimeter (in.)
Column/	hW'/D	R = fire endurance time (min)
gypsum wallboard	$R = 130 \left(\frac{2}{2} \right)$	h = thickness of protection (in.)
	where $W' = W + \frac{50hD}{144}$	W' = weight of steel section and gypsum wallboard (lb/ft)
Column/spray-applied materi-		R = fire endurance time (min)
als and some board products— wide flange shapes	$R = \left[C_1\left(W/D\right) + C_2\right]h$	C_1 and C_2 = constants for specific protection material
		R = fire endurance time (min)
		C_1 and C_2 = constants for specific protection material
Column/spray-applied materi-	$\mathbf{P} = \mathbf{C} \left(\mathbf{A} \right) \mathbf{I} + \mathbf{C}$	The <i>A</i> / <i>P</i> ratio of a circular pipe is determined by $\frac{A}{P_{\text{pipe}}} = \frac{t(d-t)}{d}$ where <i>d</i> = outer diameter of pipe (in.) <i>t</i> = wall thickness of pipe (in.)
als and some board products—	$R = C_1 \left(\frac{m}{P}\right)h + C_2$	The A/P ratio of a rectangular or square tube is
		determined by $\frac{A}{P}_{tube} = \frac{t(a+b-2t)}{a+b}$ where a = outer width of tube (in.) b = outer length of tube (in.) t = wall thickness of tube (in.)
		R_0 = fire endurance at zero moisture content of concret (min)
		m = equilibrium moisture content of concrete (% by volume)
		b_f = width of flange (in.)
	$R = R_0(1 + 0.03m)$	d = depth of section (in.)
Column/concrete cover or	where $(W)^{0.7}$ $(h^{1.6})$	k_c = thermal conductivity of concrete at ambient temperature in (Btu/hr-ft-°F)
encased	$R_{0} = 0.17 \left(\frac{W}{D}\right) + 0.28 \left(\frac{H}{k_{c}^{0.2}}\right) \times \left\{1 + 26 \left[\frac{H}{L_{c}^{0.2}}\right]^{0.8}\right\}$	H = thermal capacity of steel section at ambient temperature (if covered, = 0.11 W Btu/ft-°F; if encased, = 0.11 W + [($\rho_r c_c$)/144] ($b_f d - A_s$)
	$\left[\left[p_r c_c n (L+n) \right] \right]$	c_c = specific heat of concrete at ambient temperature (Btu/lb-°F)
		L = inside dimension of one side of <i>square</i> concrete box protection (in.); if encased, $L = (b_f + d)/2$
		$A_s =$ cross-sectional area of steel column (in ²)

Empirical Equations for Steel Columns

9.2.6 Heated Perimeter (D) for Beams

Heated Perimeter for Steel Beams

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.2.7 Beam or Column Substitution

$$h_1 = \left(\frac{\frac{W_2}{D_2} + 0.6}{\frac{W_1}{D_1} + 0.6}\right) h_2$$

where

h = thickness of spray-applied fire protection (in.)

W = weight of steel beam (lb/ft)

D = heated perimeter of steel beam (in.)

Subscripts:

- 1 = substitute beam and required protection thickness
- 2 = beam and protection thickness specified in referenced tested design or tested assembly

9.2.8 Heated Perimeter (D) of Steel Trusses

Heated Perimeter for Steel Truss Shapes

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.2.9 Steel Truss Protection

Typical Fire Protection Methods for Steel Trusses

Truss	Fire Protection Method					
Туре	Membrane	Envelope	Individual Element			
Transfer		Х	Х			
Staggered		Х	Х			
Interstitial	X	Х	Х			

Practical Guidelines for Thickness of Gypsum Wallboard for Steel Truss Envelope Protection

Fire Endurance (hr)	Gypsum X	Wallboard Type
1	5/8" (16 mm)	5/8" (16 mm)
2	1-1/4" (32 mm)	
3		1-1/2" (38 mm)

9.2.10 Unprotected Steel Member Temperature Rise

The equation for temperature rise during a short period, ΔT , is:

$$\Delta T_{\rm s} = \frac{\alpha}{c_{\rm s} \left(\frac{W}{D}\right)} \left(T_{\rm f} - T_{\rm s}\right) \Delta$$

where

 $\Delta T_{\rm s}$ = temperature rise in steel (°F or °C)

 α = heat-transfer coefficient from exposure to steel member (Btu/ft²-s-°R or W/m²•K)

D = heater perimeter (ft or m)

 $c_{\rm s}$ = steel specific heat (Btu/lb-°F or J/kg•°C)

W = steel weight per linear foot (lb/ft or kg/m)

- $T_{\rm f}$ = fire temperature (°R or K)
- $T_{\rm s}$ = steel temperature (°R or K)

 $\Delta t = \text{time step (sec)}$

9.2.10.1 Heat-Transfer Coefficient

 $\alpha = \alpha_r + \alpha_c$

where

 α_c = convective heat-transfer coefficient = (9.8 × 10⁻⁴) to (1.2 × 10⁻³) Btu/sec-ft²-°R⁴, or 20 to 25 W/m²•K⁴

 α_r = radiative heat-transfer coefficient

$$\alpha_{\rm r} = \frac{C_1 \varepsilon_{\rm f}}{T_{\rm f} - T_{\rm s}} \left(T_{\rm f}^4 - T_{\rm s}^4 \right)$$

where

 $C_1 = 4.76 \times 10^{-13} \text{ Btu/sec-ft}^2 \cdot \text{°R}^4$, or $5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$

 ε_{f} = effective emissivity (see table below)

Effective Emissivity

Type of Construction	Effective Emissivity
1. Column exposed to fire on all sides	0.7
2. Column outside facade	0.3
3. Floor girder with floor slab of concrete, only the underside of the bottom flange being directly exposed to fire	0.5
 4. Floor girder with floor slab on the top flange: Girder of 1 section for which the width-depth ratio is not less than 0.5 Girder of 1 section for which the width-depth ratio is less than 0.5 Box girder and lattice girder 	0.5 0.7 0.7

9.2.11 Protected Steel Member Temperature Rise

$$\Delta T_{\rm s} = \frac{k_{\rm c}}{c_{\rm s} h \left(\frac{W}{D}\right)} \left(T_{\rm f} - T_{\rm s}\right) \Delta t$$

where

 $\Delta T_{\rm s}$ = temperature rise in steel (°F or °C)

D = heater perimeter (ft or m)

 $c_{\rm s}$ = steel specific heat (Btu/lb-°F or J/kg•°C)

 k_i = thermal conductivity of insulation material (Btu/ft-hr-°F or W/m•°C)

h =protection thickness (ft or m)

W = steel weight per linear foot (lb/ft or kg/m)

 $T_{\rm f}$ = fire temperature (°R or K)

 $T_{\rm s}$ = steel temperature (°R or K)

 $\Delta t = \text{time step (sec)}$

9.3 Concrete/Masonry

9.3.1 Thermal Properties of Concrete at 70°F

	Normal-Weight Concrete	Structural Lightweight Concrete
Thermal Conductivity (k)	0.95 Btu/ft-hr-°F (1.64 W/m•K)	0.35 Btu/ft-hr-°F (0.61 W/m•K)
Specific Heat (c)	0.20 Btu/lb-°F (835 J/kg•K)	0.20 Btu/lb-°F (835 J/kg•K)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.3.2 Fire Endurance of a Concrete Slab

Effect of Thickness and Type of Aggregate, Based on Heat Transmission Source: SFPE *Handbook of Fire Protection Engineering*, fifth edition, with permission from SFPE.

Lightweight Concretes, Based on Heat Transmission

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.3.3 Concrete Column Fire Resistance

	Minimum Column Dimension for Fire Resistance Rating, in inches (mm)					
	1 hr	1.5 hr	2 hr	3 hr	4 hr	
Semi-lightweight	8 (200)	8.5 (216)	9 (225)	10.5 (270)	12 (305)	
Siliceous	8 (200)	9 (225)	10 (255)	12 (305)	14 (356)	
Carbonate	8 (200)	9 (225)	10 (255)	11 (280)	12 (305)	

9.4 Timber/Wood

9.4.1 Fire Resistance of Wood Frame and Protective Coverings

The addition of insulation to a wall assembly can increase its fire resistance. Adding rock wool or slag mineral wool insulation batts for additional protection to the wood-stud wall generally has an assigned time of 15 minutes.

Description of Finish	Time (min)		
3/8 in. (9.5 mm) Douglas fir plywood	5		
1/2 in. (13 mm) Douglas fir plywood	10		
5/8 in. (16 mm) Douglas fir plywood, phenolic bonded	15		
3/8 in. (9.5 mm) gypsum board	10		
1/2 in. (13 mm) gypsum board	15		
5/8 in. (16 mm) gypsum board	20		
1/2 in. (13 mm) Type X gypsum board	25		
5/8 in. (16 mm) Type X gypsum board	40		
2 layers of 3/8-in. (9.5-mm) gypsum board	25		
1 layer of 3/8-in. (9.5-mm) and 1 layer of 1/2-in. (13-mm) gypsum board	35		
2 layers of 1/2-in. (13-mm) gypsum board	40		

Time Assigned to Protective Membranes

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Time Assigned for Contribution of Wood Frame

Description of Frame	Time (min)
Wood wall studs, 16 in. (406 mm) on center	20
Wood floor and roof joists, 16 in. (406 mm) on center	10
Wood floor and roof truss assemblies, 24 in. (610 mm) on center	5

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

Minimum size for studs is nominal 2 in. \times 4 in. (51 mm \times 102 mm). Wood joists are not to be less than nominal 2 in. (51 mm) in thickness. The spacing between studs on joists should not exceed 16 in. (406 mm) on center.

9.4.2 Char Depth

$$d_{\text{char}} = \beta t$$

where

 $d_{\text{char}} = \text{char depth}$

 β = charring rate, typically assumed to be 0.6 mm/min (1.5 in./hr) for all woods

t = time (min)

9.4.3 Char Rate – White and Nordheim

 $t = m x_{c}^{1.23}$

where

t = time (min)

m = char-rate coefficient

 $x_{\rm c} = {\rm char \ depth \ (mm)}$

The char-rate coefficients (*m*) range from 0.42 to 0.84 mm/min^{1.23} for the eight species. Average values for the char-rate coefficients are 0.555 for southern pine, 0.554 for western red cedar, 0.598 for redwood, 0.734 for Engelmann spruce, 0.498 for basswood, 0.653 for hard maple, 0.747 for red oak, and 0.607 for yellow poplar. The char-rate coefficient is correlated to density, moisture content, and a char contraction factor, defined as the thickness of the char layer at the end of the fire exposure divided by the original thickness of the wood layer that was charred (char depth).

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.4.4 Thermal Conductivity of Wood

Many physical and mechanical properties of wood change with moisture content below the fiber saturation point. The equilibrium moisture content is about 9%. Moisture generally reduces the strength of wood. Moisture also reduces the charring rate.

For moisture content of 25% or less, densities greater than 300 kg/m³, and temperature of 24°C, the average thermal conductivity of wood perpendicular to the grain is:

k = S (0.0001941 + 0.000004046M) + 0.01864

where

k = thermal conductivity (W/m•K)

S = density based on volume at current moisture content and over-dry mass (kg/m³)

M =moisture content (%)

Conductivity increases about 2–3% per 10°C.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

9.4.5 Heat Capacity of Dry Wood

 $c_0 = 0.1031 + 0.003867T$

where

 c_0 = heat capacity (kJ/kg•K) of dry wood

T =temperature (K)

9.5 Tied Fire Walls

Tied fire walls are fastened to and usually encase members of the structural frame of the building, according to NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls. To remain stable, the pull of the collapsing structural members on the fire side of the wall must be resisted by the strength of the structure on the other side.

If the wall is not located at the center of strength, the lateral resistance of the frame on either side of the wall should be sufficient to resist the maximum horizontal component of the force that could result from collapsing structural framework on the opposite side. The horizontal force at each tie should be computed using this formula:

$$H = \frac{wBL^2}{8S}$$

where

H = horizontal pull per tie (lb or kg)

w = dead load plus 25% of live load of the roof (lb/ft² or kg/m²)

B = distance between ties (ft or m)

- L = span of structural member running perpendicular to wall (ft or m)
- S = sag (ft or m) that may be assumed as:
 - 0.07L for open-web steel trusses
 - 0.09L for solid-web steel beams
 - 0.06L for wood trusses

10 EGRESS AND OCCUPANT MOVEMENT

10.1 General

Factors that may influence people's responses and behaviors during evacuations in fire situations:

- Occupant characteristics-including mobility limitations and cognitive abilities
- Human response to cues (recognition time)
- Decision making (response time)
- · Movement-including susceptibility to effects from products of combustion
- Fire environment impact

10.1.1 Egress Timeline

Engineering Timeline

where

- t_{det} = detection time, the interval between fire ignition and the first detection of the fire by a device or individual
- t_{warn} = warning time, the interval between detection of the fire and the time at which an alarm signal is activated or notification of occupants takes place
- $t_{\text{pre}} = \text{pre-evacuation time, the interval between the time at which a general alarm signal or warning is given and the time at which the first deliberate evacuation movement is made (includes recognition time and response time)$
- $t_{\rm rec}$ = recognition time, the interval between the time at which the alarm signal is perceived and the time at which the occupant interprets this signal as indicating a fire/emergency event
- $t_{\rm res}$ = response time, the interval between recognition time and the time that the first move is made to evacuate the building
- $t_{\text{trav}} = \text{travel time, the time needed, once movement toward an exit has begun, for all occupants to reach a place of safety$
- t_{evac} = evacuation time, the time from the alarm signal to the time at which the occupants reach a place of safety
- t_{RSET} = required safe egress time, calculated time necessary between ignition of a fire and the time at which all occupants can reach an area of safety
- t_{ASET} = available safe egress time, calculated time available between ignition of a fire and the time at which tenability criteria are exceeded in the means of egress

10.1.2 Limitations in the Hydraulic Model of Occupant Movement

The following are limitations of the hydraulic model of occupant movement calculations:

- Behaviors that detract from movement are not explicitly considered.
- The numbers of people in a structural component are considered rather than their identity and their individual attributes.
- Movement between egress components is considered (e.g., from room to room), rather than within them.
- The results are deterministic and will therefore remain the same unless changes are made to the scenario or the assumptions employed.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.1.3 Required Safe Egress Time (RSET)

$$RSET = t_d + t_n + t_{p-e} + t_e$$

where

 $t_{\rm d}$ = time from fire ignition to detection; that is, the detection phase

- $t_{\rm p}$ = time from detection to notification of occupants of a fire emergency; that is, the notification phase
- $t_{\rm n-e}$ = time from notification (or cue reception) until evacuation commences; that is, the pre-evacuation phase
 - $t_{\rm e}$ = time from the start of purposive evacuation movement until safety is reached; that is, the evacuation phase

10.1.4 Component Effective Widths

Evit Doute Flomont	Boundary Layer Width				
Exit Route Element	in.	cm			
Stairways—wall or side of tread	6	15			
Railings, handrails ^a	3.5	9			
Theater chairs, stadium benches	0	0			
Corridors, ramp walls	8	20			
Obstacles	4	10			
Wide concourses, passageways	<18	46			
Doors, archways	6	15			

Component effective width = component width – boundary layer width

^a Where handrails are present, use the value of the actual handrail if it results in a lesser effective width.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.2 Evacuation Movement

The following people-movement characteristics are needed to estimate the movement time:

- Speed
- Specific flow
- Calculated flow

10.2.1 Evacuation Speed

If the population density is less than approximately $0.05 \text{ persons/ft}^2$ (0.54 persons/m²) of exit route, individuals will move at their own pace, independent of the speed of others. If the population density exceeds about 0.35 persons/ft² (3.8 persons/ m²), it is assumed that no movement will take place until enough of the crowd has passed from the crowded area to reduce the population density. Between the population density limits of 0.05 and 0.35 persons/ft² (0.54 and 3.8 persons/m²), the relationship between speed and population density is assumed to be represented by a linear function. The equation of this function is

S = k - akD

where

S = speed along the line of travel

D = population density, in persons per unit area

k = constant, as listed in the table of "<u>Constants for Equations for Evacuation Speed</u>"

= k_1 ; and a = 2.86 for speed, in ft/min, and density is in persons/ft²

= k_2 ; and a = 0.266 for speed, in m/s, and density is in persons/m²

10.2.2 Evacuation Speed Constants

Exit Rout	te Element	<i>k</i> ₁	<i>k</i> ₂
Corridor, aisle, r	275	1.40	
Stairs:			
Riser (in.)	Tread (in.)		
7.5	10	196	1.00
7.0	11	212	1.08
6.5	12	229	1.16
6.5	13	242	1.23

Constants for Equations for Evacuation Speed

1 in. = 25.4 mm

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.2.3 Conversion Factors for Travel Along a Stair

to vertical maverior various stall comignations									
Risers (in.)	Tread (in.)	Conversion Factor							
7.5	10.0	1.66							
7.0	11.0	1.85							
6.5	12.0	2.08							
6.5	13.0	2.22							

Conversion Factors for Relating Line of Travel Distance to Vertical Travel for Various Stair Configurations

1 in. = 25.4 mm

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.2.4 Unimpeded Travel Speed

		Speed Along	Line of Travel						
Exit Rout	e Element	ft/min	m/s						
Corridor, aisle,	ramp, doorway:	235	1.19						
Stairs:									
Riser (in.)	Tread (in.)								
7.5	10	167	0.85						
7.0	11	187	0.95						
6.5	12	196	1.00						
6.5	13	207	1.05						

Maximum (Unimpeded) Exit Flow Speeds

1 in. = 25.4 mm

10.2.5 Specific Flow

Specific flow, F_s , is the flow of evacuating persons past a point in the exit route, per unit of time per unit of effective width, W_s , of the route involved. The equation for specific flow is

 $F_s = S \times D$

where

 $F_{\rm s}$ = specific flow (persons/ft/min or persons/m/s of effective width)

 $D = \text{population density (persons/ft}^2 \text{ or persons/m}^2 \text{ of effective width)}$

S = speed of movement (ft/min or m/s)

10.2.6 Specific Flow Related to Population Density

 $F_{\rm s} = (1 - a D) k D$

where

 F_s = specific flow (persons/ft/min or persons/m/s)

a = 2.86 for speed (ft/min) and density (persons/ft²)

= 0.266 for speed (m/s) and density (persons/m²)

 $D = \text{population density (persons/ft}^2 \text{ or persons/m}^2)$

k is as listed in the table of "Constants for Equations for Evacuation Speed"

10.2.7 Maximum Specific Flow

(This information is from the following source: SFPE *Handbook of Fire Protection Engineering*, fifth edition, Chapter 59, pp. 2,126–2,127, Equation 59.8)

Occurs when the density is $0.175 \text{ persons/ft}^2$ (1.9 persons/m²) of exit route space.

		Maximum S	pecific Flow
Exit Rou	te Element	Persons/min/ft of effective width	Persons/s/m of effective width
Corridor, aisle,	ramp, doorway:	24.0	1.3
Stairs:			
Riser (in.)	Tread (in.)		
7.5	10	17.1	0.94
7.0	11	18.5	1.01
6.5	12	20.0	1.09
6.5	13	21.2	1.16

Maximum Specific Flow, F_{sm}

10.2.8 Calculated Flow

The calculated flow, $F_{\rm c}$, is the predicted flow rate of persons passing a particular point in an exit route. The equation for calculated flow is based on the assumption that the achievable flow rate through a component is directly proportional to its width.

$$F_{\rm c} = F_{\rm s} \times W_{\rm e}$$

where

 $F_{\rm c}$ = calculated flow

 F_{s} = specific flow

 $W_{\rm e}$ = effective width of the component being traversed

$$F_{\rm c} = (1 - a D)k D W_{\rm e}$$

where

 $F_{\rm c}$ is in persons/min when $k = k_1$ (see table in section 10.2.2), D is in persons/ft², and $W_{\rm e}$ is in ft.

 $F_{\rm c}$ is in persons/s when $k = k_2$ (see table in section 10.2.2), D is persons/m², and $W_{\rm e}$ is in m.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.2.9 Time for Passage

The time for passage, t_p , is the time for a group of persons to pass a point in an exit route and is expressed as

$$t_{\rm p} = \frac{P}{F_{\rm c}}$$
$$t_{\rm p} = \frac{P}{(1 - a D)kDW_{\rm e}}$$

where

 $t_{\rm p}$ = time for passage: in min when $F_{\rm c}$ is in persons/min; in sec when $F_{\rm c}$ is in persons/sec

P =population size, in persons

10.2.10 Travel Data

UNASSISTED Movement Speeds on Stairs (m/s) for People with Disabilities/Elderly

	Observational Conditions	Conf	iguratio	n		Sample		Results	
Source (Author, Year)	(L: Location, N: Nature, SC: Spatial Configuration, P: Participants, V: Variable)	Direction (Up, Down)	Slope	Distance	Collection Method	Description	Size	Mean (m/s) [Standard Devia- tion, Range]	Additional Information
DESCENT						·		`	
Jiang et al., 2012	L:China N:ET SC:2 floors, in subway station P:[S1–3: mixed age/ gender] V:different mobility capa-	Down	17.7° #	1 storey	Video	S1: Disability, no aid S2: Single crutch	40 20	0.85 [0.19, 0.32-1.34] 0.43 [0.14, 0.21-0.69]	# Derived from information in paper Measurements to 0.04- sec precision. Instructed to move "at the highest speed could maintain"
	bilities (S1–3)					S3: Double crutch	40	0.33 [0.13, 0.12-0.68]	Results also presented by gender and by varying passage widths
Kuligowski et al., 2012	L:USA N:AE SC:13 floors, assisted-liv- ing residential building P:[S1–2: mixed elderly] V:different mobility capa- bilities (S1–2)	Down	25.1° #	13 storey	Video	S1: Elderly, no aid S2: Disability, using cane	83	0.41 [0.17, 0.11-0.91] 0.23 [0.08, 0.11-0.33]	 # Derived from information in paper. Low densities implied; however, speeds presented may not always be unimpeded movement speeds. Paper also presents localized speeds between various floor groupings
Sørensen and Dederichs, 2012	L:Denmark N:[ET1-4] SC:ET1-2:2/ET3-4:3 P:mixed gender, 10-69 years V: -	Down	_	-	Video	Visually impaired	46	0.73 [0.09, 0.54-0.92]	Paper also explores and presents relationship between speed and density

	Observational Conditions	Conf	iguratio	n		Sample		Results	
Source (Author, Year)	(L: Location, N: Nature, SC: Spatial Configuration, P: Participants, V: Variable)	Direction (Up, Down)	Slope	Distance	Collection Method	Description	Size	Mean (m/s) [Standard Devia- tion, Range]	Additional Information
Jiang et al., 2009 In Chinese; data provided by	L:China N:ET SC:[40 m, subway station] P:[S1-3: mixed age/	Down	17.7° #	1 storey	Video	S1: Disability, no aid	9	0.81 [0.11, 0.68-1.06]	# Derived from informa- tion in paper Measurements to 0.04-sec
author in China.	gender] V:different mobility capa- bilities (S1–3)					S2: Single crutch	6	0.28 [0.08, 0.18-0.40]	precision Instructed to move "at the highest speed could
						S3: Double crutch	10	0.31 [0.13, 0.12-0.48]	maintain"
Fujiyama and Tyler, 2004	L:UK N:[ET1–2]. ET1: normal movement; ET2: fast movement SC:[1, various geometries]	Down	CS1: 38.8°	3.5 m #	Observer		18	CS1,ET1: 0.60 [0.16, -] CS1,ET2:0.79 [0.22, -]	# Incline length derived from horizontal and verti- cal length given in paper Paper also explores cor-
	P:[S1-8: age 60-81, mixed gender] V:Impact of component slope (CS1-4), with the procedure employed		CS2: 35°	3.7 m #			18	CS2,ET1: 0.72 [0.20, -] CS2,ET2; 0.86 [0.22, -]	relation between physical characteristics and walk- ing speeds and between speed on horizontal and stairs
	(E11-2)		CS3: 30.5°	4.6 m #			18	CS3,ET1:0.73 [0.17, -] CS3,ET2:0.96 [0.21, -]	Asked to walk at both "normal" and "fast" speeds
			CS4: 24.6°	3.4 m #			18	CS4,ET1:0.91 [0.26, -] CS4,ET2:1.15 [0.30, -]	

169

	Observational Conditions	Conf	iguratio	n		Sample		Results	
Source (Author, Year)	(L: Location, N: Nature, SC: Spatial Configuration, P: Participants, V: Variable)	Direction (Up, Down)	Slope	Distance	Collection Method	Description	Size	Mean (m/s) [Standard Devia- tion, Range]	Additional Information
Boyce et al., 1999a	L:UK N:[ET/Unimp] SC:[1] P:[S1–5: mixed age/	Down	37°- 38°	1 storey	Observer, stop- watch	S1: Locomo- tion disa- bility (all)	30	0.33 [0.16, 0.11–0.70]	Measurements to 0.1-sec precision ^a Rollator user, not used during descent Instructed
	V:different mobility capa- bilities (S1–5)					S2: Locomo- tion disa- bility, no aid	19	0.36 [0.14, 0.13–0.70]	to move in "prompt manner"
						S3: Crutches	1	0.22	
						S4: Walking stick	9	0.32 [0.12, 0.11–0.49]	
						S5: Rollator ^a	1	0.16	
Proulx et al., 1995	L:Canada N:[UE1–3] S:[UE1–3 mid-rise apart- ment] P:[mixed age/gender + disability]. S1 included those with movement disa- bilities; S2 were over 65 years old. V:different trials involving populations with different	Down	_	6–7 storey	Video	UE1, S1 UE2, S1 UE3, S1 UE2, S2 UE3, S2		0.88 ^a 0.61 0.57 0.57 0.58	 ^a Note – all speed calculations include times at rest/stop Speeds measured during low density but may not necessarily be unimpeded speeds
	mobility levels (UE1–3) and age attributes (S1–2)								

	Observational Conditions	Conf	iguratio	n		Sample		Results	
Source (Author, Year)	(L: Location, N: Nature, SC: Spatial Configuration, P: Participants, V: Variable)	Direction (Up, Down)	Slope	Distance	Collection Method	Description	Size	Mean (m/s) [Standard Devia- tion, Range]	Additional Information
ASCENT			_						
Jiang et al., 2012	L:China N:[ET/Unimp] SC:[2 floors in subway	Up	17.7° #	1 storey	Video	S1: Disability, no aid	40	0.76 [0.18, 0.52–1.19]	# Derived from informa- tion in paper
	station] P:[S1-3: mixed age/ gender] V:different mobility capa-					S2: Single crutch	20	0.39 [0.14, 0.18–0.67]	sec precision. Instructed to move "at the highest speed could maintain"
	bilities (S1–3)					S3: Double crutch	40	0.27 [0.14, 0.08–0.50]	Results also presented by gender and by varying passage widths
Fujiyama and Tyler, 2004	L:UK N:[ET1–2]:ET1, normal movement; ET2, fast movement SC:[1, various geometries]	Up	CS1:3 8.8°	3.5 #	Observer		18	CS1,ET1:0.56 [0.15, -] CS2,ET2:0.77 [0.23, -]	 # Incline length derived from paper Paper also explores cor- relation between physical characteristics and walk-
	P:[S1-8: age 60-81, mixed gender] V:impact of component slope (CS1-4) given the procedure employed (ET1 2)		CS2: 35°	3.7 #			18	CS2,ET1:0.64 [0.15, -] CS2,ET2:0.85 [0.25, -]	ing speeds and between speed on horizontal and stairs Instructed to walk at
			CS3: 30.5°	4.6 #			18	CS3,ET1:0.68 [0.15, -] CS3,ET2:0.91 [0.23, -]	both "normal" and "fast" speeds
			CS4: 24.6°	3.4 #			18	CS4,ET1:0.83 [0.19, -] CS4,ET2:1.14 [0.26, -]	

	Observational Conditions	Conf	iguratio	n		Sample		Results	
Source (Author, Year)	(L: Location, N: Nature, SC: Spatial Configuration, P: Participants, V: Variable)	Direction (Up, Down)	Slope	Distance	Collection Method	Description	Size	Mean (m/s) [Standard Devia- tion, Range]	Additional Information
Jiang et al., 2009 In Chinese; data provided by author in China	L:China N:[ET/Unimp] SC:[40 m, subway station] P:[S1–3: mixed age/ gender]	Up	17.7°	1 storey	Video	S1: Disability, no aid S2:	9	0.77 [0.13, 0.62–1.06] 0.32	
	V:different mobility capa- bilities (S1–3)					Single crutch		[0.09, 0.19–0.43]	
						S3: Double crutch	10	0.25 [0.11, 0.10–0.37]	
Boyce et al., 1999a	L:UK N:[ET/Unimp] SC:[1] P:[S1–5: mixed age/ gender]	Up	37°- 38°	1 storey	Observer, stop- watch	S1: Locomo- tion disa- bility (all)	30	0.38 [0.14, 0.13–0.62]	^a Rollator user, not used during descent Instructed to move in "prompt manner"
	E:- V:different mobility capa- bilities (S1-5)					S2: Locomo- tion disa- bility, no aid	19	0.43 [0.13, 0.14–0.62]	
						S3: Crutches	1	0.22 [-, 0.13–0.31]	
						S4: Walking stick	9	0.35 [0.11, 0.18–0.49]	
						S5: Rollator ^a	1	0.14	

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

172

10.3 Egress Behavior in Smoke

10.3.1 Smoke Density and Visibility – Jin

$$V = \frac{1}{C_{\rm s}} \log_{\rm e} \left[\frac{L_t}{\left(\frac{\delta_c aE}{\pi} \right)} \right]$$

where

- V = visibility of signs at the obscuration threshold (m)
- $C_s =$ smoke density expressed by the extinction coefficient (1/m) (hereafter, smoke density will be expressed by the extinction coefficient in 1/m)
- $L_t = brightness of signs (cd/m^2)$
- δ_c = contrast threshold of signs in smoke at the obscuration threshold (0.01~0.05)
- a = σ_s/C_s (0.4~1.0) and $C_s = \sigma_s + \sigma_{ab}$ (σ_s : scattering coefficient; σ_{ab} : absorption coefficient)
- E = mean illuminance of illuminating light from all directions in smoke (1m/m²) or (1x)

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.3.1.1 Extinction Coefficient (C_s)

Note that the extinction coefficient C_s can be obtained by the following equation:

$$C_{\rm s} = \frac{1}{D} \log_{\rm e} \left(\frac{I}{I_{\rm o}} \right)$$

where

 I_{o} = intensity of the incident light (cd)

I =intensity of light through smoke (cd)

D =light path length (m)

10.3.1.2 Visibility at 5–15 m

The visibility, V, at the obscuration threshold of signs is found to be

For a light-emitting sign: $V = \frac{5}{C_s}$

 $V = \frac{5}{C_{\rm s}} \sim V = \frac{10}{C_{\rm s}}$

For a reflecting sign:

$$V = \frac{2}{C_{\rm s}} \sim V = \frac{4}{C_{\rm s}}$$

The visibility of other objects—such as walls, floors, doors, and stairways in an underground shopping mall or a long corridor—varies depending on the interior and its contrast condition; however, the minimum value for reflecting signs may be applicable.

10.3.2 Walking Speeds in Smoke

Walking Speed in Fire Smoke

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.3.3 Occupant Exposure to Heat

Tolerance limit of 0.25 W/cm² or 2.5 kW/m² for radiant heat exposure, below which exposure can be tolerated for several minutes.

5 kW/m² for a person to get burned in 13 sec on bare skin; 40 sec for a second-degree burn.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.3.3.1 Skin Exposure to Radiant Heat

$$t_{\rm I,rad} = \frac{r}{\dot{q}^{\prime\prime 1.33}}$$

where

 $t_{\rm I,rad}$ = exposure time, min

 \dot{q}'' = radiant heat flux (kW/m²)

r =radiant heat exposure dose [(kW•m⁻²)^{4/3} min]

A relationship for time (min) to the second-degree burning of skin due to radiant flux, $q \text{ kW/m^2}$, is

$$t_{I, \text{rad}} = 6.9q^{-1.56}$$

10.3.3.2 Radiant Heat Endpoint for Exposed Skin

Endpoint	Radiant Heat Exposure Dose, r [(kW•m ⁻²) ^{4/3} min]
Severe skin pain	1.33–1.67
2nd-degree burns	4.0–12.2
3rd-degree (full thickness) burns	16.7
10.3.4 Toxicity

In fires, three major toxic effects are important:

- 1. The concentrations of irritant gases likely to impair escape efficiency or cause incapacitation (sensory irritation)
- 2. The exposure doses (C_t product doses) of asphyxiant gases likely to cause a) incapacitation through confusion and loss of consciousness or b) death
- 3. The exposure doses of irritants likely to cause death through lung edema and inflammation after the fire Source: SFPE *Handbook of Fire Protection Engineering*, fifth edition, with permission from SFPE.

10.3.4.1 Fractional Irritant Concentration (FIC)

When FIC = 1, a tenability endpoint (escape impairment) is predicted. Incapacitation is predicted at higher concentrations (FIC $\sim 3-5$).

 $FIC = FIC_{HC1} + FIC_{HBr} + FIC_{HF} + FIC_{SO_2} + FIC_{NO_2} + FIC_{CH_2CHO} + FIC_{CH_2O} + \sum FIC_x$

where

 $\Sigma FIC_x = FIC_s$ for any other irritants present

Gas	Concentration Predicted to Impair Escape in Half the Population (ppm)	Concentration Predicted to Cause Incapacitation in Half the Population (ppm)
HCl	200	900
HBr	200	900
HF	200	900
SO ₂	24	120
NO ₂	70	350
CH ₂ CHO (acrolein) ^a	4	20
HCHO (formaldehyde) ^a	6	30

10.3.4.2 Irritant Concentrations of Common Fire Gases

^a Where the concentrations of acrolein and formaldehyde (or other important irritants) are unknown, a term derived from smoke density, 0.5 OD/m, may be used as an indication of irritancy likely to impair escape efficiency.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.3.4.3 Fractional Effective Dose (FED)

$$\text{FED} = \int_{t1}^{t2} \sum_{i=1}^{n} \frac{C_i}{(Ct)_i} \,\Delta t$$

where

- C_{i} = average concentration of a dose-related toxicant, such as an asphyxiant gas "I", over the chosen time increment
- Δt = chosen time increment (min)
- $(Ct)_i$ = specific exposure dose (concentration × minutes) that would constitute an effective dose (i.e., an exposure dose producing a defined endpoint, such as preventing an occupant's safe escape)

10.3.4.4 Fraction of an Incapacitating Dose for Single Species

 $F_{\text{Ico}} = \frac{conc. \ gas \ present \times time}{conc. \times time \ for \ incapacitation}$

If the fractional doses per each minute are summed throughout the exposure, the dose and time to incapacitation can be predicted.

10.3.4.5 Carbon Monoxide/Carboxyhemoglobin

$$F_{\rm Ico} = 3.317 \times 10^{-5} \,({\rm CO})^{1.036} \, \frac{Vt}{D}$$

where

(CO) = carbon monoxide concentration (ppm v/v 20° C)

V = volume of air breathed each minute (L/min)

- t =exposure time (min)
- D = exposure dose percent (COHb) for incapacitation

The following values may be taken for *V* and *D*:

Activity Level of Subject	V(L/min)	D (percent COHb)
Resting or sleeping	8.5	40
Light work—i.e., walking to escape	25	30
Heavy work—i.e., slow running, walking up stairs	5	20

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.3.4.6 Average Concentration of Asphyxiant Gases—Single Armchair Room Burn

For each minute during the first 6 minutes of a single armchair room burn:

Asphyxiant Gas	At 1 min	At 2 min	At 3 min	At 4 min	At 5 min	At 6 min
CO (ppm)	0	0	500	2,000	3,500	6,000
HCN (ppm)	0	0	0	75	125	174
CO ₂ %	0	0	1.5	3.5	6	8
O ₂ %	20.9	20.9	19	17.5	15	12

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.3.4.7 Time to Incapacitation from Oxygen Depletion

$$t_{\rm I_o} = \exp \left[8.13 - 0.54 \left(20.9 - \% \, {\rm O}_2 \right) \right]$$

Dose to incapacitation = $(20.9 - \% O_2)(t_{I_o})$

For a short exposure time, *t*, fraction of an incapacitating dose of hypoxia:

$$F_{I_o} = \frac{(20.9 - \% O_2)(t)}{(20.9 - \% O_2)(t_{I_o})}$$

$$F'_{I_o} = \frac{1}{t_{I_o}} \text{ for each minute of exposure}$$

10.4 Emergency Lights

		Purpose of	Light Sourc	e Area	Max	Illuminance	Regression Linear Function		
No. Type		Utilization	Appearance	Size (cm)	Cuminance (cd/m ²) ^a	(tx) ^b	Slope (k ₁)	Intercept (k ₂)	
1.	Ordinary emergency light	Emergency light and exit sign used for ship		9.5	10,000	7	4.5	3.4	
2.	Hanging lamp	Emergency light		13.0	1,000	3	9.2	2.1	
3.	Halogen lamp #1	General purpose (unidirectional)		5.5	10,000	690	47.6	-6.1	
4.	Halogen lamp #2	General purpose (wide-directional)	S	5.5	60,000	34	32.9	-3.9	
5.	MIL standard emergency lamp	Emergency light based on US mili- tary specification		10.0	16,230	103	8.9	2.0	

^aMax luminance is the highest luminance of light source surface.

^bIlluminance is the vertical illuminance from 1 m against the light source center.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

10.5 Remoteness of Exits

(Source: NFPA 101, Life Safety Code.

Reproduced with permission of NFPA®, which owns all rights thereto. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety. For a full copy, please go to www.nfpa.org.)

7.5.1.3.1. Where more than one exit, exit access, or exit discharge is required from a building or portion thereof, such exits, exit accesses, or exit discharges shall be remotely located from each other and be arranged to minimize the possibility that more than one has the potential to be blocked by any one fire or other emergency condition.

7.5.1.3.2. Where two exits, exit accesses, or exit discharges are required, they shall be located at a distance from one another not less than one-half the length of the maximum overall diagonal dimension of the building or area to be served, measured in a straight line between the nearest edge of the exits, exit accesses, or exit discharges, unless otherwise provided in 7.5.1.3.3 through 7.5.1.3.5.

7.5.1.3.3. In buildings protected throughout by an approved, supervised automatic sprinkler system in accordance with Section 9.7, the minimum separation distance between two exits, exit accesses, or exit discharges, measured in accordance with 7.5.1.3.2, shall be not less than one-third the length of the maximum overall diagonal dimension of the building or area to be served.

11 PHYSICAL PROPERTIES

11.1 General

11.1.1 Hearing

Threshold of hearing = 0 dB = 0.00002 Pa = 1 \times 10⁻¹² W/m²

11.1.2 Properties of Air

merma roperties of An at Ambient temperatures										
Air Properties at 10°C										
Density	ρ _a	1.293 kg/m ³								
Thermal conductivity	k _a	0.02492 W/m•K								
Dynamic viscosity	μ_a	1.71 × 10 ^{−5} kg/m•s								
Prandtl number	Pr_a	0.71								

Thermal Properties of Air at Ambient Temperatures

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

11.1.3 Properties of Water

Property	USCS	Metric
Weight	8.34 lb/gal	
Density at 70°F or 21°C	62.4 lb/ft ³	1,000 kg/m ³
Specific heat of water	1 Btu to raise 1 lb of water 1°F	4.186 kJ/kg•K
Latent heat of vaporization for 1 lb or 0.45 kg of water	970.3 Btu	2,254.8 kJ/kg
Heat of fusion of ice to convert 1 lb or 0.45 kg of ice into water (32°F)	143.4 Btu	151.3 kJ
Vapor pressure (absolute) at 70°F or 21°C	0.361 psia	2.49 kPa
Vapor pressure (head) at 70°F or 21°C	0.84 ft	0.26 m
Vapor pressure (absolute) at 90°F or 32°C	0.70 psia	4.83 kPa
Vapor pressure (head) at 90°F or 32°C	1.6 ft	0.78 m

11.1.4 Properties of Metals

Metal	Symbol	Atomic Weight	Density ρ (kg/m ³) Water = 1,000	Melting Point (°C)	Melting Point (°F)	Specific Heat (J/kg•K)	Electrical Resistivity (10 ⁻⁸ Ω•m) at 0°C (273.2 K)	Heat Conductivity λ (W/m•K) at 0°C (273.2 K)
Aluminum	Al	26.98	2,698	660	1,220	895.9	2.5	236
Antimony	Sb	121.75	6,692	630	1,166	209.3	39	25.5
Arsenic	As	74.92	5,776	subl. 613	subl. 1,135	347.5	26	_
Barium	Ba	137.33	3,594	710	1,310	284.7	36	_
Beryllium	Be	9.012	1,846	1,285	2,345	2,051.5	2.8	218
Bismuth	Bi	208.98	9,803	271	519	125.6	107	8.2
Cadmium	Cd	112.41	8,647	321	609	234.5	6.8	97
Caesium	Cs	132.91	1,900	29	84	217.7	18.8	36
Calcium	Ca	40.08	1,530	840	1,544	636.4	3.2	_
Cerium	Ce	140.12	6,711	800	1,472	188.4	7.3	11
Chromium	Cr	52	7,194	1,860	3,380	406.5	12.7	96.5
Cobalt	Со	58.93	8,800	1,494	2,721	431.2	5.6	105
Copper	Cu	63.54	8,933	1,084	1,983	389.4	1.55	403
Gallium	Ga	69.72	5,905	30	86	330.7	13.6	41
Gold	Au	196.97	19,281	1,064	1,947	129.8	2.05	319
Indium	In	114.82	7,290	156	312	238.6	8	84
Iridium	Ir	192.22	22,550	2,447	4,436	138.2	4.7	147
Iron	Fe	55.85	7,873	1,540	2,804	456.4	8.9	83.5
Lead	Pb	207.2	11,343	327	620	129.8	19.2	36
Lithium	Li	6.94	533	180	356	4,576.2	8.55	86
Magnesium	Mg	24.31	1,738	650	1,202	1,046.7	3.94	157
Manganese	Mn	54.94	7,473	1,250	2,282	502.4	138	8
Mercury	Hg	200.59	13,547	-39	-38	142.3	94.1	7.8
Molybdenum	Mo	95.94	10,222	2,620	4,748	272.1	5	139
Nickel	Ni	58.69	8,907	1,455	2,651	439.6	6.2	94
Niobium	Nb	92.91	8,578	2,425	4,397	267.9	15.2	53
Osmium	Os	190.2	22,580	3,030	5,486	129.8	8.1	88
Palladium	Pd	106.4	11,995	1,554	2,829	230.3	10	72
Platinum	Pt	195.08	21,450	1,772	3,221	134	9.81	72
Potassium	K	39.09	862	63	145	753.6	6.1	104
Rhodium	Rh	102.91	12,420	1,963	3,565	242.8	4.3	151
Rubidium	Rb	85.47	1,533	38.8	102	330.7	11	58
Ruthenium	Ru	101.07	12,360	2,310	4,190	255.4	7.1	117
Silver	Ag	107.87	10,500	961	1,760	234.5	1.47	428
Sodium	Na	22.989	966	97.8	208	1,235.1	4.2	142
Strontium	Sr	87.62	2,583	770	1,418		20	
Tantalum	Та	180.95	16,670	3,000	5,432	150.7	12.3	57
Thallium	Tl	204.38	11,871	304	579	138.2	10	10
Thorium	Th	232.04	11,725	1,700	3,092	117.2	14.7	54

Metal	Symbol	Atomic Weight	Density ρ (kg/m ³) Water = 1,000	Melting Point (°C)	Melting Point (°F)	Specific Heat (J/kg•K)	Electrical Resistivity (10 ⁻⁸ Ω•m) at 0°C (273.2 K)	Heat Conductivity λ (W/m•K) at 0°C (273.2 K)
Tin	Sn	118.69	7,285	232	449	230.3	11.5	68
Titanium	Ti	47.88	4,508	1,670	3,038	527.5	39	22
Tungsten	W	183.85	19,254	3,387	6,128	142.8	4.9	177
Uranium	U	238.03	19,050	1,135	2,075	117.2	28	27
Vanadium	V	50.94	6,090	1,920	3,488	481.5	18.2	31
Zinc	Zn	65.38	7,135	419	786	393.5	5.5	117
Zirconium	Zr	91.22	6,507	1,850	3,362	284.7	40	23

11.1.5 Typical Material Properties

Typical Material Properties

(Use these values if the specific alloy and temper are not listed in Table 2 below)

Material	Modulus of Elasticity, <i>E</i> [Mpsi (GPa)]	Modulus of Rigidity, <i>G</i> [Mpsi (GPa)]	Poisson's Ratio, v	Coefficient of Thermal Expansion, α [10 ⁻⁶ °F (10 ⁻⁶ °C)]	Density, ρ [lb/in ³ (Mg/m ³)]
Steel	29.0 (200.0)	11.5 (80.0)	0.30	6.5 (11.7)	0.282 (7.8)
Aluminum	10.0 (69.0)	3.8 (26.0)	0.33	13.1 (23.6)	0.098 (2.7)
Cast Iron	14.5 (100.0)	6.0 (41.4)	0.21	6.7 (12.1)	0.246–0.282 (6.8–7.8)
Wood (Fir)	1.6 (11.0)	0.6 (4.1)	0.33	1.7 (3.0)	—
Brass	14.8–18.1 (102–125)	5.8 (40)	0.33	10.4 (18.7)	0.303–0.313 (8.4–8.7)
Copper	17 (117)	6.5 (45)	0.36	9.3 (16.6)	0.322 (8.9)
Bronze	13.9–17.4 (96–120)	6.5 (45)	0.34	10.0 (18.0)	0.278–0.314 (7.7–8.7)
Magnesium	6.5 (45)	2.4 (16.5)	0.35	14 (25)	0.061 (1.7)
Glass	10.2 (70)	_	0.22	5.0 (9.0)	0.090 (2.5)
Polystyrene	0.3 (2)	_	0.34	38.9 (70.0)	0.038 (1.05)
Polyvinyl Chloride (PVC)	<0.6 (<4)	_	_	28.0 (50.4)	0.047 (1.3)
Alumina Fiber	58 (400)	_	_	—	0.141 (3.9)
Aramide Fiber	18.1 (125)	_	_	—	0.047 (1.3)
Boron Fiber	58 (400)	_	-	—	0.083 (2.3)
Beryllium Fiber	43.5 (300)	_	_	—	0.069 (1.9)
BeO Fiber	58 (400)	_	-	—	0.108 (3.0)
Carbon Fiber	101.5 (700)	_	-	-	0.083 (2.3)
Silicon Carbide Fiber	58 (400)			—	0.116 (3.2)

Source: Hibbeler, R.C., Mechanics of Materials, 4th ed., 2000. Pearson Education, Inc., New York, NY.

Average Mechanical Properties of Typical Engineering Materials (U.S. Customary Units)^a

		Specific	Modulus of	Modulus of	Modulus of Yield Strength (ksi)			Ultimate Strength (ksi) σu			% Flongation in	Poisson's	Coeff. of Therm.
Ma	terials	Weight γ (lb/in ³)	Elasticity, <i>E</i> (10 ³ ksi)	Rigidity, <i>G</i> (10 ³ ksi)	Tens.	Comp. ^b	Shear	Tens.	Comp. ^b	Shear	2 in. Specimen	Ratio v	Expansion α 10 ^{-6/°} F
Metallic													
Aluminum Wrought	2014-T6	0.101	10.6	3.9	60	60	25	68	68	42	10	0.35	12.8
Alloys	6061-T6	0.098	10.0	3.7	37	37	19	42	42	27	12	0.35	13.1
Cont Inc. Allows	Gray ASTM 20	0.260	10.0	3.9	-	_	-	26	97	_	0.6	0.28	6.70
Cast Iron Alloys	Malleable ASTM A-197	0.263	25.0	9.8	-	-	-	40	83	_	5	0.28	6.60
Common Allows	Red Brass C83400	0.316	14.6	5.4	11.4	11.4	-	35	35	-	35	0.35	9.80
Copper Alloys	Bronze C86100	0.319	15.0	5.6	50	50	-	95	95	-	20	0.34	9.60
Magnesium Alloy	[Am 1004-T611]	0.066	6.48	2.5	22	22	-	40	40	22	1	0.30	14.3
	Structural A36	0.284	29.0	11.0	36	36	-	58	58	-	30	0.32	6.60
Steel Alloys	Stainless 304	0.284	28.0	11.0	30	30	-	75	75	-	40	0.27	9.60
	Tool L2	0.295	29.0	11.0	102	102	-	116	116	-	22	0.32	6.50
Titanium Alloy	[Ti-6Al-4V]	0.160	17.4	6.4	134	134	-	145	145	-	16	0.36	5.20
Nonmetallic				·									
Comparts	Low Strength	0.086	3.20	-	-	-	1.8	-	-	-	-	0.15	6.0
Concrete	High Strength	0.086	4.20	-	-	-	5.5	-	_	_	-	0.15	6.0
	Kevlar 49	0.0524	19.0	-	-	_	-	104	70	10.2	2.8	0.34	-
Plastic Reinforced	30% Glass	0.0524	10.5	-	_	-	-	13	19	_	-	0.34	-
Wood Select	Douglas Fir	0.017	1.90	-	-	-	-	0.30 ^c	3.78 ^d	0.90 ^d	-	0.29°	_
Structural Grade	White Spruce	0.130	1.40	-	_	-	-	0.36 ^c	5.18 ^d	0.97 ^d	-	0.31°	-

(Use these values for the specific alloys and temper listed. For all other materials refer to Table 1 above.)

a Specific values may vary for a particular material due to alloy or mineral composition, mechanical working of the specimen, or heat treatment. For a more exact value, consult reference books for the material.

^b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.

° Measured perpendicular to the grain.

^d Measured parallel to the grain.

Source: Hibbeler, R.C., Mechanics of Materials, 4 ed., Pearson Education, Inc., 2000, New York, NY.

©2020 NCEES

181

11.2 Thermodynamics

	Mol		ç p		c _v		R		
Substance	Wt.	kJ/kg∙K	Btu/lbm-°R	kJ/kg∙K	Btu/lbm-°R	k	kJ/kg•K	ft-lbf/lbm-°R	
Air	29	1.00	0.240	0.718	0.171	1.40	0.2870	53.34	
Argon	40	0.520	0.125	0.312	0.0756	1.67	0.2081	38.68	
Butane	58	1.72	0.415	1.57	0.381	1.09	0.1430	26.58	
Carbon dioxide	44	0.846	0.203	0.657	0.158	1.29	0.1889	35.10	
Carbon monoxide	28	1.04	0.249	0.744	0.178	1.40	0.2968	55.16	
Ethane	30	1.77	0.427	1.49	0.361	1.18	0.2765	51.38	
Helium	4	5.19	1.25	3.12	0.753	1.67	2.0769	386.0	
Hydrogen	2	14.3	3.43	10.2	2.44	1.40	4.1240	766.4	
Methane	16	2.25	0.532	1.74	0.403	1.30	0.5182	96.35	
Neon	20	1.03	0.246	0.618	0.148	1.67	0.4119	76.55	
Nitrogen	28	1.04	0.248	0.743	0.177	1.40	0.2968	55.15	
Octane vapor	114	1.71	0.409	1.64	0.392	1.04	0.0729	13.53	
Oxygen	32	0.918	0.219	0.658	0.157	1.40	0.2598	48.28	
Propane	44	1.68	0.407	1.49	0.362	1.12	0.1885	35.04	
Steam	18	1.87	0.445	1.41	0.335	1.33	0.4615	85.76	

Thermal and Physical Properties of Gases at Room Temperature

Thermal and Physical Properties of Selected Liquids and Solids at Room Temperature

		ç p	Density			
Substance	kJ/kg•K	Btu/lbm-°R	kg/m ³	lbm/ft ³		
Liquids			·			
Ammonia	4.80	1.146	602	38		
Mercury	0.139	0.033	13,560	847		
Water	4.18	1.000	997	62.4		
Solids						
Aluminum	0.900	0.215	2,700	170		
Copper	0.386	0.092	8,900	555		
Ice (0°C; 32°F)	2.11	0.502	917	57.2		
Iron	0.450	0.107	7,840	490		
Lead	0.128	0.030	11,310	705		

Source: Howell, John, R. and Richard O. Bukins, Fundamentals of Engineering Thermodynamics, 2nd ed., McGraw-Hill, 1992, p. 896.

11.3 Physical and Combustion Properties of Selected Fuels

Fuel M W	Mol.	Spec.	T _{Boil}	Heat of Van	Heat of	Stoichi	ometry	Flamn Lir	nability nits	Spont. Ign.	Fuel for Max.	Max. Flame	Flame Temp. at Max Fl	Ignit Ene	tion rgy	Queno Dis	ching st.
ruci	Wt.	Grav.	(°C)	(kJ/kg)	(MJ/kg)			(% sto	oichio.)	Temp.	Speed (%	Speed (am/s)	Speed	Stoich.	Min.	Stoich.	Min.
				¢ 0,		% Vol.	f a	Lean	Rich	('C) "	stoichio.)	(cm/s)	(K)	(10-5	cal.)	(mr	m)
Acetaldehyde	44.1	0.783	-56.7	569.4	—	0.0772	0.1280	-	-	-	-	—	-	8.99	-	2.29	-
Acetone	58.1	0.792	56.7	523.0	30.8	0.0497	0.1054	59	233	561.1	131	50.18	2,121	27.48	-	3.81	-
Acetylene	26.0	0.621	-83.9	_	48.2	0.0772	0.0755	31	-	305.0	133	155.25	-	0.72	-	0.76	-
Acrolein	56.1	0.841	52.8	-	-	0.0564	0.1163	48	752	277.8	100	61.75	-	4.18	-	1.52	-
Acrylonitrile	53.1	0.797	78.3	_	_	0.0528	0.1028	87	-	481.1	105	46.75	2,461	8.60	3.82	2.29	1.52
Ammonia	17.0	0.817	-33.3	1,373.6	_	0.2181	0.1645	-	-	651.1	_	_	2,600	_	-	_	-
Aniline	93.1	1.022	184.4	432.6	_	0.0263	0.0872	-	-	593.3	_	_	-	_	-	_	-
Benzene	78.1	0.885	80.0	431.8	39.9	0.0277	0.0755	43	336	591.7	108	44.60	2,365	13.15	5.38	2.79	1.78
Benzyl alcohol	108.1	1.050	205.0	_	-	0.0240	0.0923	_	-	427.8	-	_	-	_	-	_	-
1,2-Butadiene (methylallene)	54.1	0.658	11.1	_	45.5	0.0366	0.0714	_	_	_	117	63.90	2,419	5.60	_	1.30	-
<i>n</i> -Butane	58.1	0.584	-0.5	385.8	45.7	0.0312	0.0649	54	330	430.6	113	41.60	2,256	18.16	6.21	3.05	1.78
Butanone (methyl- ethyl ketone)	72.1	0.805	79.4	-	-	0.0366	0.0951	_	_	_	100	39.45	-	12.67	6.69	2.54	2.03
1-Butene	56.1	0.601	-6.1	443.9	45.3	0.0377	0.0678	53	353	443.3	116	47.60	2,319	_	-	_	-
d-Camphor	152.2	0.990	203.4	_	_	0.0153	0.0818	_	-	466.1	-	_	_	_	_	_	_
Carbon disulfide	76.1	1.263	46.1	351.0	_	0.0652	0.1841	18	1,120	120.0	102	54.46	-	0.36	-	0.51	-
Carbon monoxide	28.0	-	-190.0	211.7	_	0.2950	0.4064	34	676	608.9	170	42.88	-	_	-	_	-
Cyclobutane	56.1	0.703	12.8	_	-	0.0377	0.0678	-	-	-	115	62.18	2,308	_	-	_	-
Cyclohexane	84.2	0.783	80.6	258.1	43.8	0.0227	0.0678	48	401	270.0	117	42.46	2,250	32.98	5.33	4.06	1.78
Cyclohexene	82.1	0.810	82.8	_	_	0.0240	0.0701	-	-	_	_	44.17	-	20.55	-	3.30	-
Cyclopentane	70.1	0.751	49.4	388.3	44.2	0.0271	0.0678	-	-	385.0	117	41.17	2,264	19.84	-	3.30	-
Cyclopropane	42.1	0.720	-34.4	_	-	0.0444	0.0678	58	276	497.8	113	52.32	2,328	5.74	5.50	1.78	1.78
trans-Decalin	138.2	0.874	187.2	_	-	0.0142	0.0692	-	-	271.7	109	33.88	2,222	_	-	-	-
<i>n</i> -Decane	142.3	0.734	174.0	359.8	44.2	0.0133	0.0666	45	356	231.7	105	40.31	2,286	-	-	2.06	-
Diethyl ether	74.1	0.714	34.4	351.6	—	0.0337	0.0896	55	2,640	185.6	115	43.74	2,253	11.71	6.69	2.54	2.03
Ethane	30.1	-	-88.9	488.3	47.4	0.0564	0.0624	50	272	472.2	112	44.17	2,244	10.04	5.74	2.29	1.78
Ethyl acetate	88.1	0.901	77.2	_	—	0.0402	0.1279	61	236	486.1	100	35.59	-	33.94	11.47	4.32	2.54
Ethanol	46.1	0.789	78.5	836.8	26.8	0.0652	0.1115	-	-	392.2	-	_	-	-	-	_	-
Ethylamine	45.1	0.706	16.7	611.3		0.0528	0.0873	_	_		_			57.36		5.33	
Ethylene oxide	44.1	1.965	10.6	581.1	_	0.0772	0.1280	_	-	428.9	125	11.35	2,411	2.51	1.48	1.27	1.02
Furan	68.1	0.936	32.2	400.0		0.0444	0.1098	_	_		_			5.40		1.78	
<i>n</i> -Heptane	100.2	0.688	98.5	364.9	44.4	0.0187	0.0661	53	450	247.2	122	42.46	2,214	27.49	5.74	3.81	1.78

183

184

Fuel M	Mol.	Spec.	T _{Poil}	Heat	Heat of	Stoichie	ometry	Flamm Lin	ability nits	Spont. Ign.	Fuel for Max.	Max. Flame	Flame Temp. at	Ignit Ener	ion rgy	Quenc Dis	ching t.
Fuel	Wt.	Grav.	(°C)	of Vap. (k.J/kg)	Comb. (M.J/kg)			(% sto	ichio.)	Temp.	Flame Sneed (%	Speed	Max. Fl. Sneed	Stoich.	Min.	Stoich.	Min.
				(110, 119)	(110, 11g)	% Vol.	f ^a	Lean	Rich	(°C) ^b	stoichio.)	(cm/s)	(K)	(10-5	cal.)	(mr	n)
<i>n</i> -Hexane	86.2	0.664	68.0	364.9	44.7	0.0216	0.0659	51	400	260.6	117	42.46	2,239	22.71	5.50	3.56	1.78
Hydrogen	2.0	-	-252.7	451.0	119.9	0.2950	0.0290	-	-	571.1	170	291.19	2,380	0.36	0.36	0.51	0.51
iso-Propanol	60.1	0.785	82.2	664.8	-	0.0444	0.0969	-	-	455.6	100	38.16	_	15.54	-	2.79	-
Kerosene	154.0	0.825	250.0	290.8	43.1	_	_	-	-	_	—	_	-	-	-	—	-
Methane	16.0	-	-161.7	509.2	50.0	0.0947	0.0581	46	164	632.2	106	37.31	2,236	7.89	6.93	2.54	2.03
Methanol	32.0	0.793	64.5	1,100.9	19.8	0.1224	0.1548	48	408	470.0	101	52.32	-	5.14	3.35	1.78	1.52
Methyl formate	60.1	0.975	31.7	472.0	-	0.0947	0.2181	-	-	_	-	_	-	14.82	-	2.79	-
<i>n</i> -Nonane	128.3	0.772	150.6	288.3	44.6	0.0147	0.0665	47	434	238.9	-	_	_	-	-	-	-
<i>n</i> -Octane	114.2	0.707	125.6	300.0	44.8	0.0165	0.0633	51	425	240.0	_	_	2,251	_	_	_	-
<i>n</i> -Pentane	72.1	0.631	36.0	364.4	45.3	0.0255	0.0654	54	359	284.4	115	42.46	2,250	19.60	5.26	3.30	1.78
1-Pentene	70.1	0.646	30.0	_	45.0	0.0271	0.0678	47	370	298.3	114	46.75	2,314	_	_	_	-
Propane	44.1	0.508	-42.2	425.5	46.3	0.0402	0.0640	51	283	504.4	114	42.89	2,250	7.29	_	2.03	1.78
Propene	42.1	0.522	-47.7	437.2	45.8	0.0444	0.0678	48	272	557.8	114	48.03	2,339	6.74	_	2.03	_
<i>n</i> -Propanol	60.1	0.804	97.2	685.8	_	0.0444	0.0969	_	_	433.3	_	_	_	_	_	_	-
Toluene	92.1	0.872	110.6	362.8	40.9	0.0227	0.0743	43	322	567.8	105	38.60	2,344	_	_	_	-
Triethylamine	101.2	0.723	89.4	_	_	0.0210	0.0753	_	_	_	_	_	_	27.48	_	3.81	-
Turpentine	_	_	_	_	_	_	_	_	_	252.2	_	_	_	_	_	_	_
Xylene	106.0	0.870	130.0	334.7	43.1	_	_	_	_	_	_	_	_	_	_	_	_
Gasoline 73 octane	120.0	0.720	155.0	338.9	44.1	-	_	-	-	298.9	_	_	_	_	-	-	-
Gasoline 100 octane	-	_	-	_	-	-	_	-	-	468.3	106	37.74	_	_	-	-	-
Jet fuel JP1	150.0	0.810	_	_	43.0	0.0130	0.0680	_	-	248.9	107	36.88	_	_	-	-	_
JP3	112.0	0.760	_	_	43.5	0.0170	0.0680	_	-	_	_	_	_	_	-	-	_
JP4	126.0	0.780	_	-	43.5	0.0150	0.0680	_	_	261.1	107	38.17	-	_	-	-	_
JP5	170.0	0.830	_	_	43.0	0.0110	0.0690	-	-	242.2	_	_	_				

^a f is the stoichiometric air/fuel ratio; i.e., f = 1/r. ^b For additional information, see Table C.5 and Chapter 18, "Ignition of Liquids," in the SFPE *Handbook of Fire Protection Engineering*, fifth edition.

11.4 Heat of Combustion

11.4.1 Selected Fuels

Heat Of Compusi	ion for Selected	rueis al 25 C	290 K)	
Fuel ^a	∆H _c kJ/mol	∆H _c kJ/g	$\frac{\Delta H_{\rm c}^{\rm c}}{\rm kJ/g~(O_2)}$	∆H _c kJ/g (air)
Carbon monoxide (CO)	283	10.10	17.69	4.10
Methane (CH_4)	800	50.00	12.54	2.91
Ethane (C_2H_6)	1,423	47.45	11.21	2.96
Ethene (C_2H_4)	1,411	50.53	14.74	3.42
Ethyne (C_2H_2)	1,253	48.20	15.73	3.65
Propane (C_3H_8)	2,044	46.45	12.80	2.97
<i>n</i> -Butane $(n-C_4H_{10})$	2,650	45.69	12.80	2.97
<i>n</i> -Pentane $(n-C_5H_{12})$	3,259	45.27	12.80	2.97
<i>n</i> -Hexane	3,861	44.90		
c-Hexane (c-C ₆ H ₁₂)	3,680	43.81	12.80	2.97
n-Octane $(n$ -C ₈ H ₁₈)	5,104	44.77	12.80	2.97
Benzene (C_6H_6)	3,120	40.00	13.06	3.03
Methanol (CH ₃ OH)	635	19.83	13.22	3.07
Ethanol (C ₂ H ₅ OH)	1,232	26.78	12.88	2.99
Acetone (CH ₃ COCH ₃)	1,786	30.79	14.00	3.25
D-glucose $(C_6H_{12}O_6)$	2,772	15.40	13.27	3.08
Cellulose ^b	_	16.09	13.59	3.15
Polyethylene	_	43.28	12.65	2.93
Polypropylene	_	43.31	12.66	2.94
Polystyrene	_	39.85	12.97	3.01
Polyvinylchloride	_	16.43	12.84	2.98
Polymethylmethacrylate	-	24.89	12.98	3.01
Polyacrylonitrile	-	30.80	13.61	3.16
Polyoxymethylene	_	15.46	14.50	3.36
Polyethyleneterephthalate	_	22.00	13.21	3.06
Polycarbonate	-	29.72	13.12	3.04
Nylon 6,6	-	29.58	12.67	2.94
Polyester	_	23.8	_	_
Wool	_	20.5	_	_
Wood (European Beech)	_	19.5	_	_
Wood volatiles (European Beech)	_	16.6	_	_
Wood char (European Beech)	_	34.3	_	_
Wood (Ponderosa Pine)	_	19.4	_	_

Heat of Combustion for Selected Fuels at 25°C (298 K)

^a Apart from the solids (D-glucose, etc.), the initial state of the fuel and of all the products is taken to be gaseous.

 $^{\rm b}$ Cotton and rayon are virtually pure cellulose and can be assumed to have the same heat of combustion.

 $^{c}\Delta H_{c}(O_{2}) = 13.1 \text{ kJ/g}$ is used in the oxygen consumption method for calculating rate of heat release.

11.4.2 Net Heats of Combustion Per Unit Mass of Fuel^a

Fuel ^d	Formula ^b	$\Delta H_{\rm T}^{\rm c}$ (kJ/g)	ΔH_{O}^{*} (kJ/g)	$\Delta H_{\rm CO_2}$ (kJ/g)	ΔH_{CO}^* (kJ/g)
Normal Alkanes					
Methane	CH ₄	50.1	12.5	(18.2)	(18.6)
Ethane	C ₂ H ₆	47.1	12.7	16.2	15.4
Propane	C ₃ H ₈	46.0	12.9	15.3	14.0
Butane	C_4H_{10}	45.4	12.7	15.1	13.7
Pentane	C ₅ H ₁₂	45.0	12.6	14.7	13.2
Hexane	C ₆ H ₁₄	44.8	12.7	14.6	12.9
Heptane	C ₇ H ₁₆	44.6	12.7	14.5	12.8
Octane	C ₈ H ₁₈	44.5	12.6	14.4	12.7
Nonane	C ₉ H ₂₀	44.3	12.7	14.3	12.5
Decane	C ₁₀ H ₂₂	44.4	12.7	14.3	12.4
Undecane	C ₁₁ H ₂₄	44.3	12.7	14.3	12.4
Dodecane	C ₁₂ H ₂₆	44.2	12.7	14.2	12.3
Tridecane	C ₁₃ H ₂₈	44.2	12.7	14.2	12.3
Kerosene	C ₁₄ H ₃₀	44.1	12.7	14.1	12.2
Hexadecane	C ₁₆ H ₃₄	44.1	12.7	14.2	12.3
		Average	12.7	14.6	12.9
Substituted Alkanes					
Methylbutane	C ₅ H ₁₂	45.0	12.6	14.7	13.1
Dimethylbutane	C ₆ H ₁₄	44.8	12.7	14.6	13.0
Methylpentane	C ₆ H ₁₄	44.8	12.7	14.6	12.9
Dimethylpentane	C ₇ H ₁₆	44.6	12.7	14.5	12.9
Methylhexane	C ₇ H ₁₆	44.6	12.6	14.4	12.7
Isooctane	C ₈ H ₁₈	44.5	12.6	14.4	12.7
Methylethylpentane	C ₈ H ₁₈	44.5	12.6	14.4	12.7
Ethylhexane	C ₈ H ₁₈	44.5	12.6	14.4	12.7
Dimethylhexane	C ₈ H ₁₈	44.5	12.7	14.5	12.8
Methylheptane	C ₈ H ₁₈	44.5	12.6	14.4	12.7
		Average	12.6	14.6	12.8
Cyclic Alkanes					
Cyclopentane	C ₅ H ₁₀	44.3	12.8	13.9	11.9
Methylcyclopentane	C ₆ H ₁₂	43.8	12.7	13.9	11.9
Cyclohexane	C ₆ H ₁₂	43.8	12.7	13.8	11.7
Methylcyclohexane	C ₇ H ₁₄	43.4	12.7	13.8	11.7
Ethylcyclohexane	C ₈ H ₁₆	43.2	12.7	13.8	11.7
Dimethylcyclohexane	C ₈ H ₁₆	43.2	12.7	13.8	11.7
Cyclooctane	C ₈ H ₁₆	43.2	12.7	13.9	11.9
Decalin	C ₁₀ H ₁₈	42.8	12.7	13.4	11.0
Bicyclohexyl	C ₁₂ H ₂₂	42.6	12.6	13.3	11.0
		Average	12.7	13.8	11.6

Fuel ^d	Formula ^b	$\Delta H_{\rm T}^{\rm c}$ (kJ/g)	ΔH_{O}^{*} (kJ/g)	$\Delta H_{\rm CO_2}$ (kJ/g)	$\Delta H_{\rm CO}^*$ (kJ/g)
Normal Alkenes		/			
Ethylene	C ₂ H ₄	48.0	13.8	15.0	13.6
Propylene	C ₃ H ₆	46.4	13.4	14.6	12.9
Butylene	C ₄ H ₈	45.6	14.3	14.3	12.5
Pentene	C ₅ H ₁₀	45.2	14.3	14.3	12.5
Hexene	C ₆ H ₁₂	44.9	12.9	14.1	12.2
Heptene	C ₇ H ₁₄	44.6	12.9	14.1	12.2
Octene	C ₈ H ₁₆	44.5	12.9	14.1	12.1
Nonene	C ₉ H ₁₈	44.3	12.9	14.1	12.1
Decene	C ₁₀ H ₂₀	44.2	12.9	14.1	12.2
Dodecene	C ₁₂ H ₂₄	44.1	12.9	14.1	12.2
Tridecene	C ₁₃ H ₂₆	44.0	12.9	14.1	12.2
Tetradecene	C ₁₄ H ₂₈	44.0	12.9	14.1	12.2
Hexadecene	C ₁₆ H ₃₂	43.9	12.9	14.1	12.1
Octadecene	C ₁₈ H ₃₆	43.8	12.9	14.1	12.1
		Average	13.2	14.2	12.4
Cyclic Alkenes					
Cyclohexene	C ₆ H ₁₀	43.0	13.0	13.4	11.0
Methylcyclohexene	C ₇ H ₁₂	43.1	12.9	13.4	11.1
		Average	13.0	13.4	11.1
Dienes	1				
1,3-Butadiene	C ₄ H ₆	44.6	13.7	13.7	11.5
Cyclooctadiene	C ₈ H ₁₂	43.2	13.3	13.3	10.9
		Average	13.5	13.5	11.2
Normal Alkynes	11				
Acetylene	C ₂ H ₂	47.8	(15.6)	14.3	12.4
Heptyne	C ₇ H ₁₂	44.8	13.4	13.9	11.8
Octyne	C ₈ H ₁₄	44.7	13.3	14.0	11.9
Decyne	C ₁₀ H ₁₈	44.5	13.2	13.9	11.9
Dodecyne	C ₁₂ H ₂₂	44.3	13.2	14.0	12.0
		Average	13.3	14.0	12.0
Arenes	1				
Benzene	C ₆ H ₆	40.1	13.0	11.9	8.7
Toluene	C ₇ H ₈	39.7	12.9	12.1	9.0
Styrene	C ₈ H ₈	39.4	13.1	12.0	8.8
Ethylbenzene	C ₈ H ₁₀	39.4	12.9	12.3	9.4
Xylene	C ₈ H ₁₀	39.4	13.0	12.4	9.5
Propylbenzene	C ₉ H ₁₂	39.4	12.9	12.5	9.6
Trimethylbenzene	C ₉ H ₁₂	39.2	12.9	12.5	9.7
Cumene	C ₉ H ₁₂	39.2	12.9	12.9	9.6
Naphthalene	C ₁₀ H ₈	39.0	12.9	11.3	7.7

Fuel ^d	Formula ^b	$\Delta H_{\mathrm{T}}^{\mathrm{c}}$ (kJ/g)	ΔH_{O}^{*} (kJ/g)	$\Delta H_{\rm CO_2}$ (kJ/g)	ΔH_{CO}^{*} (kJ/g)
Arenes (cont'd)	<u> </u>				
Tetralin	C ₁₀ H ₁₂	39.0	12.9	12.2	9.2
Butylbenzene	C ₁₀ H ₁₄	39.0	12.9	12.7	9.9
Diethylbenzene	C ₁₀ H ₁₄	39.0	13.7	13.5	11.1
<i>p</i> -Cymene	C ₁₀ H ₁₄	39.0	13.0	12.5	9.6
Methylnaphthalene	C ₁₁ H ₁₀	38.9	12.9	11.5	8.1
Pentylbenzene	C ₁₁ H ₁₆	38.8	13.0	12.8	10.2
Triethylbenzene	C ₁₂ H ₁₈	38.7	12.7	12.7	10.0
		Average	13.0	12.4	9.4
Alcohols					
Methyl alcohol	CH ₄ O	20.0	13.4	14.5	12.9
Ethyl alcohol	C ₂ H ₆ O	27.7	13.2	14.5	12.7
<i>n</i> -Propyl alcohol	C ₃ H ₈ O	31.8	13.3	14.5	12.7
Isopropyl alcohol	C ₃ H ₈ O	31.8	13.3	14.5	12.7
Allyl alcohol	C ₃ H ₆ O	31.4	14.2	13.8	11.7
<i>n</i> -Butyl alcohol	C ₄ H ₁₀ O	34.4	13.3	14.5	12.8
Isobutyl alcohol	C ₄ H ₁₀ O	34.4	13.3	14.5	12.8
Sec-butyl alcohol	C ₄ H ₁₀ O	34.4	13.3	14.5	12.8
Ter-butyl alcohol	C ₄ H ₁₀ O	34.4	13.3	14.5	12.8
<i>n</i> -Amyl alcohol	C ₅ H ₁₂ O	36.2	13.3	14.5	12.8
Isobutyl carbinol	C ₅ H ₁₂ O	36.2	13.3	14.5	12.8
Sec-butyl carbinol	C ₅ H ₁₂ O	36.2	13.3	14.5	12.8
Methylpropylcarbinol	C ₅ H ₁₂ O	36.2	13.3	14.5	12.8
Dimethylethylcarbinol	C ₅ H ₁₂ O	36.2	13.3	14.5	12.8
<i>n</i> -Hexyl alcohol	C ₆ H ₁₄ O	37.4	13.3	14.5	12.7
Dimethylbutylalcohol	C ₆ H ₁₄ O	37.4	13.3	14.5	12.7
Ethylbutyl alcohol	C ₆ H ₁₂ O	37.4	13.3	14.5	12.7
Cyclohexanol	C ₆ H ₁₂ O	37.3	13.7	14.1	12.2
Benzyl alcohol	C ₇ H ₈ O	32.4	13.0	11.4	8.0
<i>n</i> -Heptyl alcohol	C ₇ H ₁₆ O	39.8	13.7	15.0	13.6
<i>n</i> -Octyl alcohol	C ₈ H ₁₈ O	40.6	13.7	15.0	13.6
<i>n</i> -Nonyl alcohol	C ₉ H ₂₀ O	40.3	13.4	14.7	13.0
		Average	13.3	14.5	12.8
Aldehydes	I				
Formaldehyde	CH ₂ O	18.7	(17.5)	12.7	10.1
Acetaldehyde	C ₂ H ₄ O	25.1	13.8	12.6	9.7
Butyraldehyde	C ₄ H ₈ O	33.8	13.9	13.9	11.7
Crotonaldehyde	C ₄ H ₆ O	34.8	15.2	13.8	11.8
Benzaldehyde	C ₇ H ₆ O	32.4	13.4	11.2	7.5
Ethyl hexaldehyde	C ₈ H ₁₆ O	39.4	13.7	12.7	9.9
		Average	14.2	13.3	10.6

Fuel ^d	Formula ^b	$\Delta H_{\rm T}^{\rm c}$ (kJ/g)	ΔH_{O}^{*} (kJ/g)	$\Delta H_{\rm CO_2}$ (kJ/g)	ΔH_{CO}^{*} (kJ/g)
Ketones		/			
Acetone	C ₃ H ₆ O	29.7	13.4	13.1	10.5
Methylethyl ketone	C ₄ H ₈ O	32.7	13.4	13.4	11.0
Diethyl ketone	C ₅ H ₁₀ O	33.7	12.9	13.2	10.7
Cyclohexanone	C ₆ H ₁₀ O	35.9	13.8	13.3	11.0
Methyl butyl ketone	C ₆ H ₁₂ O	35.2	12.9	13.3	11.0
Di-acetone alcohol	$C_6H_{12}O_2$	37.3	(16.9)	(16.4)	(15.7)
Dipropyl ketone	C ₇ H ₁₄ O	38.6	13.8	14.3	12.5
Phenylbutyl ketone	C ₁₁ H ₁₄ O	34.8	12.6	11.6	(8.4)
		Average	13.2	13.2	11.1
Acids					
Formic acid	CH ₂ O ₂	5.7	16.4	5.96	0
Acetic acid	C ₂ H ₄ O ₂	14.6	13.7	9.95	5.65
Benzoic acid	C ₇ H ₆ O ₂	24.4	12.4	9.66	5.18
Cresylic acid	C ₈ H ₈ 0 ₂	34.0	(16.0)	13.1	10.6
Esters					
Ethyl formate	C ₂ H ₆ O ₂	20.2	13.3	11.3	7.8
<i>n</i> -Propyl formate	C ₄ H ₈ O ₂	23.9	13.2	12.0	8.8
<i>n</i> -Butyl formate	C ₅ H ₁₀ O ₂	26.6	13.0	12.3	9.4
Methyl acetate	C ₃ H ₆ O ₂	20.2	13.3	11.3	7.8
Ethyl acetate	C ₄ H ₈ O ₂	23.9	13.2	12.0	8.8
<i>n</i> -Propyl acetate	C ₅ H ₁₀ O ₂	26.6	13.0	12.3	9.4
<i>n</i> -Butyl acetate	C ₆ H ₁₂ O ₂	28.7	13.0	12.6	9.8
Isobutyl acetate	$C_6H_{12}O_2$	28.7	13.0	12.6	9.8
Amyl acetate	$C_7H_{14}O_2$	30.3	13.0	12.8	10.1
Cyclohexyl acetate	C ₈ H ₁₄ O ₂	31.5	13.3	12.7	10.0
Octyl acetate	C ₁₀ H ₂₀ O ₂	33.6	12.9	13.1	10.6
Ethylacetoacetate	C ₆ H ₁₀ O ₃	30.3	(17.6)	(14.9)	(13.5)
Methyl propionate	C ₄ H ₈ O ₂	23.9	13.2	12.0	7.4
Ethyl propionate	C ₅ H ₁₀ O ₂	26.6	13.0	12.3	9.4
<i>n</i> -Butyl propionate	$C_7H_{14}O_2$	30.3	13.0	12.8	10.1
Isobutyl propionate	$C_7H_{14}O_2$	30.3	13.0	12.8	10.1
Amyl propionate	$C_8H_{18}O_2$	31.6	12.9	12.9	10.3
Methyl butyrate	C ₅ H ₁₀ O ₂	26.6	13.0	12.3	9.4
Ethyl butyrate	$C_6H_{12}O_2$	28.7	13.0	12.6	9.8
Propyl butyrate	C ₇ H ₁₄ O ₂	30.3	13.0	12.8	10.1
<i>n</i> -Butyl butyrate	C ₈ H ₁₆ O ₂	31.6	12.9	12.9	10.3
Isobutyl butyrate	C ₈ H ₁₆ O ₂	31.6	12.9	12.9	10.3
Ethyl laurate	C ₁₄ H ₂₈ O ₂	37.2	13.3	13.8	11.6
Ethyl lactate	C ₅ H ₁₀ O ₃	30.8	(18.9)	(16.5)	(16.0)
Butyl lactate	$C_{7}H_{14}O_{3}$	33.3	(16.8)	(15.8)	(14.8)

Fuel ^d	Formula ^b	$\Delta H_{\mathrm{T}}^{\mathrm{c}}$ (kJ/g)	ΔH_{O}^{*} (kJ/g)	$\Delta H_{\rm CO_2}$ (kJ/g)	$\Delta H_{\rm CO}^*$ (kJ/g)
Esters (cont'd)	·				
Amyl lactate	C ₈ H ₁₆ O ₃	34.3	(16.4)	(15.6)	(14.5)
Ethyl benzoate	$C_9H_{10}O_2$	34.5	(15.4)	13.1	10.5
Ethyl carbonate	C ₅ H ₁₀ O ₃	30.8	(18.9)	(16.5)	(16.0)
Ethyl oxalate	$C_{6}H_{10}O_{4}$	28.7	(20.2)	(16.6)	(20.2)
Ethyl malonate	C ₅ H ₈ O ₄	32.2	(17.9)	(19.3)	(20.4)
		Average	13.0	12.5	9.7
Others				. <u> </u>	
Camphor	C ₁₀ H ₁₆ O	38.8	13.7	13.4	11.1
Cresol	C ₇ H ₈ O	34.6	13.7	12.1	9.1
Resorcinol	C ₆ H ₆ O ₂	26.0	13.7	10.8	5.9
Acrolein	C ₃ H ₄ O	29.1	14.6	12.3	9.4
C-H-N Fuels					
Acrylonitrile	C ₃ H ₃ N	24.5	8.5	9.8	5.4
Diethylamine	C ₄ H ₁₁ N	38.0	11.2	15.8	14.8
<i>n</i> -Butylamine	C ₄ H ₁₁ N	38.0	11.2	15.8	14.8
sec-Butylamine	C ₄ H ₁₁ N	38.0	11.2	15.8	14.8
Pyridine	C ₅ H ₉ N	32.2	11.0	11.6	8.2
Aniline	C ₆ H ₇ N	33.8	11.2	11.9	8.7
Picoline	C ₆ H ₇ N	33.8	11.2	11.9	8.7
Triethylamine	C ₆ H ₁₅ N	39.6	11.6	15.2	13.8
Toluidine	C ₇ H ₉ N	34.9	11.3	12.1	9.1
Dimethylaniline	C ₈ H ₁₁ N	35.7	11.5	12.3	9.3
Di-n-butylamine	C ₈ H ₁₉ N	40.6	11.9	14.9	13.4
Quinoline	C ₉ H ₇ N	36.1	12.4	11.8	8.5
Quinaldine	C ₁₀ H ₉ N	36.7	12.4	11.9	8.7
Butylaniline	C ₁₀ H ₁₅ N	37.0	11.7	12.5	9.7
Tri-n-butylamine	C ₁₂ H ₂₇ N	41.6	12.1	14.6	12.9
		Average	11.5	15.4	14.1
C-H-S Fuels					
Carbon disulfide	CS ₂	13.6	10.8	(23.5)	(27.0)
Thiophene	C ₄ H ₄ S	31.9	14.0	15.2	14.0
Methylthiophene	C ₅ H ₆ S	33.2	13.6	14.8	13.2
Thiophenol	C ₆ H ₆ S	34.1	13.8	14.2	12.3
Hexyl mercaptan	C ₆ H ₁₄ S	33.0	11.6	14.8	13.2
Thiocresol	C ₇ H ₈ S	34.9	13.5	14.1	12.1
Heptyl mercaptan	C ₇ H ₁₆ S	33.7	11.6	14.4	12.7
Cresolmethylsulfide	C ₈ H ₁₁ S	36.2	13.4	15.9	15.0
Decylmercaptan	C ₁₀ H ₂₂ S	34.9	11.5	13.8	11.7
Dodecyl mercaptan	C ₁₂ H ₂₆ S	35.5	11.5	13.6	11.4
Hexyl sulfide	C ₁₂ H ₂₆ S	35.5	11.5	13.6	11.4

Fuel ^d	Formula ^b	$\frac{\Delta \boldsymbol{H}_{\mathrm{T}}^{\mathrm{c}}}{(\mathrm{kJ/g})}$	ΔH_{O}^{*} (kJ/g)	$\frac{\Delta H_{\rm CO_2}}{(\rm kJ/g)}$	$\frac{\Delta \boldsymbol{H}_{\rm CO}^*}{(\rm kJ/g)}$
C-H-S Fuels (cont'd)				·	
Heptyl sulfide	C ₁₄ H ₃₀ S	35.9	11.5	13.4	11.1
Octyl sulfide	C ₁₆ H ₃₄ S	36.3	11.5	13.3	10.9
Decyl sulfide	C ₂₀ H ₄₂ S	36.8	11.4	13.1	10.7
		Average	11.3	13.1	11.5
Carbon-Hydrogen Atoms in	n the Structure				
Polyethylene	CH ₂	43.6	12.8	13.9	11.8
Polypropylene	СН	43.4	12.7	13.8	11.7
Polyisobutylene	CH ₂	43.7	12.7	13.9	11.9
Polybutadiene	CH _{1.5}	42.8	13.1	13.1	10.7
Polystyrene	СН	39.2	12.7	12.2	9.2
Expanded polystyrene:					
GM47	CH _{1.1}	38.1	12.4	11.3	7.7
GM49	CH _{1.1}	38.1	12.4	11.3	7.7
GM51	СН	35.6	11.6	10.8	7.0
GM53	CH _{1.1}	37.6	12.4	11.3	7.7
		Average	12.5	12.4	9.5
Carbon-Hydrogen-Oxygen	-Nitrogen Atoms in the	Structure			
Polyoxy-methylene	CH ₂ O	15.4	14.4	10.5	6.6
Polymethyl-methacrylate	CH _{1.6} O _{0.4}	25.2	13.1	11.5	8.0
Polyester	CH _{1.4} O _{0.22}	32.5	13.9	12.5	9.6
Ероху	CH _{1.3} O _{0.20}	28.8	12.1	10.8	6.9
Polycarbonate	CH _{0.88} O _{0.19}	29.7	13.1	10.7	6.9
Cellulose triacetate	CH _{1.3} O _{0.67}	17.6	13.3	9.6	5.1
Polyethylene-terephthalate	CH _{0.80} O _{0.40}	22.0	13.2	9.6	5.1
Rigid phenolic foam	CH _{1.1} O _{0.24}	36.4	(16.8)	(14.0)	(12.0)
Polyacrylonitrile (PAN)	CHN _{0.33}	30.8	10.7	12.3	9.4
Red oak	CH _{1.7} O _{0.72} N _{0.001}	17.1	13.2	10.2	6.0
Douglas fir	CH _{1.7} O _{0.742} N _{0.002}	16.4	12.4	9.5	5.0
Nylon	CH _{1.8} O _{0.17} N _{0.17}	30.8	11.9	13.3	10.8
Flexible polyurethane foams.					
GM21	CH _{1.8} O _{0.30} N _{0.05}	26.2	12.1	11.5	8.0
GM23	CH _{1.8} O _{0.35} N _{0.06}	27.2	13.7	12.5	9.7
GM25	CH _{1.7} O _{0.32} N _{0.07}	24.6	12.0	11.1	7.5
GM27	CH _{1.7} O _{0.03} N _{0.08}	23.2	11.2	10.4	6.2
Rigid polyurethane foams:	1	· · · · · · · · · · · · · · · · · · ·			
GM29	CH _{1.1} O _{0.23} N _{0.10}	26.0	12.6	10.7	6.8
GM31	CH _{1.2} O _{0.22} N _{0.10}	25.0	11.9	10.2	6.1
GM37	CH _{1.2} O _{0.20} N _{0.08}	28.0	12.7	11.2	7.5

Fuel ^d	Formula ^b	$\frac{\Delta \boldsymbol{H}_{\mathrm{T}}^{\mathrm{c}}}{(\mathrm{kJ/g})}$	ΔH_{O}^{*} (kJ/g)	$\begin{array}{c} \Delta H_{\rm CO_2} \\ (\rm kJ/g) \end{array}$	$\Delta H_{\rm CO}^*$ (kJ/g)					
Carbon-Hydrogen-Oxygen	-Nitrogen Atoms in the	Structure (cont'd)							
Rigid polyisocyanurate foam	s:									
GM41	CH _{1.0} O _{0.19} N _{0.11}	26.2	12.5	10.4	6.4					
GM43	CH _{0.93} O _{0.20} N _{0.11}	22.2	10.8	8.9	(4.0)					
		Average	12.5	10.9	7.2					
Carbon-Hydrogen-Chlorin	Carbon-Hydrogen-Chlorine Atoms in the Structure									
Polyethylene with:										
25% chlorine	CH _{1.9} Cl _{0.13}	31.6	12.7	13.4	10.8					
36% chlorine	CH _{1.8} Cl _{0.22}	26.3	12.8	12.9	10.2					
48% chlorine	CH _{1.7} Cl _{0.36}	20.6	12.8	12.3	9.4					
Polychloroprene	CH _{1.3} Cl _{0.30}	25.3	13.3	12.7	9.5					
Polyvinylchloride	CH _{1.5} Cl _{0.50}	16.4	11.7	11.7	8.2					
Polyvinyl-idenechloride	CHCl	9.0	13.5	9.8	(5.5)					
		Average	12.8	12.1	9.6					
Carbon-Hydrogen-Fluorin	e Atoms in the Structur	·e								
Teflon TFE	CF ₂	6.2	9.7	(7.1)	(1.1)					
Teflon FEP	CF _{1.8}	4.8	(6.9)	(5.0)	(0)					
Tefzel ETFE	CHF	12.6	12.6	9.2	(4.4)					
Teflon PFA	CF _{1.7} O _{0.01}	5.0	(8.0)	(5.3)	(0)					
Kel-F (CTFE)	CF _{1.5} Cl _{0.50}	6.5	11.8	8.6	(3.5)					
Halar (E-CTFE)	CHF _{0.75} Cl _{0.25}	12.0	9.8	9.8	(5.4)					
Kynar (PVF ₂)	CHF	13.3	12.4	9.1	(4.2)					
Tedlar (PVF)	CH _{1.5} F _{0.50}	13.5	(6.5)	(7.1)	(1.1)					
Carbon-Hydrogen-Oxygen	-Silicone Atoms in the S	Structure								
Silicone-1	CH _{1.3} O _{0.25} Si _{0.18}	21.7	12.6	11.0	7.4					
Silicone-2	CH _{1.5} O _{0.30} Si _{0.26}	21.3	13.9	12.4	9.4					
Silicone-3	CH ₃ O _{0 50} Si _{0 50}	25.1	14.5	21.0	23.0					

Note: Numbers in parentheses not used for averaging.

^a From the data measured in the FM Global Research Flammability Laboratory.

^b From the data for the elemental composition of the polymeric materials measured in the FM Global Research Flammability Laboratory.

^c From the data measured by the FM Global Research Flammability Laboratory in the oxygen bomb calorimeter and corrected for water as a gas and for the residue.

^d Trade names from Harper, C.A., Ed. *Handbook of Plastics and Elastomers*. 1975: McGraw-Hill Book Company, New York.

11.4.3 Pure Substances

Heat of Combustion and Related Properties of Pure Substances

Material	Composition	Molecular Weight, <i>W</i>	Gross, Δh ^u _c (MJ/kg)	Net, ∆ <i>h</i> ¹ _c (MJ/kg)	$\frac{\Delta h_{c}^{1}}{r_{o}}$ (MJ/kg of O ₂)	Oxygen Fuel Mass Ratio, r _o	Boiling Temp., T _b (°C)	Latent Heat of Vaporization, Δh_v (kJ/kg)	Liquid Heat Capacity, C _{pl} (kJ/kg•°C)	Vapor Heat Capacity, C _{pv} (kJ/kg•°C)
Acetaldehyde	C ₂ H ₄ O	44.05	27.07	25.07	13.81	1.816	20.8	-	1.94	1.24
Acetic acid	C ₂ H ₄ O ₂	60.05	14.56	13.09	12.28	1.066	118.1	395		1.11
Acetone	C ₃ H ₆ O	58.08	30.83	28.56	12.96	2.204	56.5	501	2.12	1.29
Acetylene	C ₂ H ₂	26.04	49.91	48.22	15.70	3.072	-84.0	_	_	1.69
Acrolein	C ₃ H ₄ O	56.06	29.08	27.51	13.77	1.998	52.5	505	_	1.17
Acrylonitrile	C ₃ H ₃ N	53.06	33.16	31.92	14.11	2.262	77.3	615	2.10	1.20
$(Allene) \rightarrow propadiene$		1	<u> </u>	1			1			
Ammonium perchlorate*	NH ₄ ClO ₄	117.49	2.35	2.16	3.97	0.545	-	-	-	
iso-Amyl alcohol	C ₅ H ₁₂ O	88.15	37.48	34.49	12.67	2.723	132.0	501	2.90	1.50
Aniline	C ₆ H ₇ N	93.12	36.44	34.79	13.06	2.663	184.4	478	2.08	1.16
Benzaldehyde	C ₇ H ₆ O	106.12	33.25	32.01	13.27	2.412	179.2	385	1.61	
Benzene	C ₆ H ₆	78.11	41.83	40.14	13.06	3.073	80.1	389	1.72	1.05
Benzoic acid*	C ₇ H ₆ O ₂	122.12	26.43	25.35	12.90	1.965	250.8	415	_	0.85
Benzyl alcohol	C ₇ H ₈ O	108.13	34.56	32.93	13.09	2.515	205.7	467	2.00	1.19
Bicyclohexyl	C ₁₂ H ₂₂	166.30	45.35	42.44	12.61	3.367	236.0	263		
1,2-Butadiene	C_4H_6	54.09	47.95	45.51	13.99	3.254	10.8	-	-	1.48
1,3-Butadiene	C ₄ H ₆	54.09	46.99	44.55	13.69	3.254	-4.4	-	-	1.47
$(1,3-Butadiyne) \rightarrow diacety$	lene									
<i>n</i> -Butane	C_4H_{10}	58.12	49.50	45.72	12.77	3.579	-0.5	-	2.30	1.68
iso-Butane	C_4H_{10}	58.12	48.95	45.17	12.62	3.579	-11.8	-	-	1.67
1-Butene	C_4H_8	56.10	48.44	45.31	13.24	3.422	-6.2	_	-	1.53
n-Butylamine	$C_4H_{11}N$	73.14	41.75	38.45	12.84	2.994	77.8	372	2.57	1.62
d-Camphor*	$\mathrm{C_{10}H_{16}O}$	152.23	38.75	36.44	12.84	2.838	203.4	-	-	0.82
Carbon*	С	12.01	32.80	32.80	12.31	2.664	4,200.0	-	-	0.71
Carbon disulfide	CS ₂	76.13	6.34	6.34	5.03	1.261	46.5	351	1.00	0.60
Carbon monoxide	СО	28.01	10.10	10.10	17.69	0.571	-191.3	_		1.04
Cellulose*	$\mathrm{C_6H_{10}O_5}$	162.14	17.47	16.12	13.61	1.184	-	_	1.16	-
(Chloroethylene) \rightarrow vinyl o	chloride									
$(Chloroform) \rightarrow trichlorom$	nethane									
Chlorotrifluoroethylene	C ₂ F ₃ Cl	116.47	2.00	2.00	3.64	0.549	-28.3	188	1.34	0.72
<i>m</i> -Cresol	C ₇ H ₈ O	108.13	34.26	32.64	12.98	2.515	202.2	399	2.00	1.13
Cumene	C_9H_{12}	120.19	43.40	41.20	12.90	3.195	152.3	312	1.77	1.26
Cyanogen	C ₂ N ₂	52.04	21.06	21.06	17.12	1.230	-21.2	_	-	1.12
Cyclobutane	C ₄ H ₈	56.10	48.91	45.77	13.38	3.422	12.9	_		1.29
Cyclohexane	C ₆ H ₁₂	84.16	46.58	43.45	12.70	3.422	80.7	357	1.84	1.26
Cyclohexene	C_6H_{10}	82.14	45.67	42.99	12.99	3.311	82.8	371	1.80	1.28
Cyclohexylamine	C ₆ H ₁₃ N	99.18	41.05	38.17	12.79	2.984	134.5			
Cyclopentane	C_5H_{10}	70.13	46.93	43.80	12.80	3.422	49.3	389	2.23	1.18
Cyclopropane	C ₃ H ₆	42.08	49.70	46.57	13.61	3.422	-32.9	-	1.92	1.33
(Decahydronaphthalene) -	→ cis-decalin									
cis-Decalin	C ₁₀ H ₁₈	138.24	45.49	42.63	12.70	3.356	195.8	309	1.67	1.21
<i>n</i> -Decane	C ₁₀ H ₂₂	142.28	47.64	44.24	12.69	3.486	174.1	276	2.19	1.85
Diacetylene	C_4H_2	50.06	46.60	45.72	15.89	2.877	10.3	-	-	1.47
$(Diamine) \rightarrow hydrazine$						r				
Diborane	H ₆ B ₂	27.69	79.80	79.80	23.02	3.467	-92.5	-	_	1.75

Material	Composition	Molecular Weight, <i>W</i>	Gross, ∆h c u (MJ/kg)	Net, ∆h ¹ _c (MJ/kg)	$\frac{\Delta h_{\rm c}^{\rm l}}{r_{\rm o}}$ (MJ/kg of O ₂)	Oxygen Fuel Mass Ratio, r _o	Boiling Temp., T _b (°C)	Latent Heat of Vaporization, Δh _v (kJ/kg)	Liquid Heat Capacity, C _{pl} (kJ/kg•°C)	Vapor Heat Capacity, C _{pv} (kJ/kg•°C)
Dichloromethane	CH ₂ Cl ₂	84.94	6.54	6.02	10.65	0.565	39.7	330	1.18	0.80
Diethyl cyclohexane	C ₁₀ H ₂₀	140.26	46.30	43.17	12.58	3.422	174.0		1.87	
Diethyl ether	C ₄ H ₁₀ O	74.12	36.75	33.79	13.04	2.590	34.6	360	2.34	1.52
(2,4 Diisocyanotoulene) →	toluene diisocyan	ate		I				I]		
(Diisopropyl ether) \rightarrow iso-	propyl ether									
Dimethylamine	C ₂ H ₇ N	45.08	38.66	35.25	13.24	2.662	6.9	-	_	1.80
(Dimethyl aniline) \rightarrow xylid	lene									
Dimethyldecalin	C ₁₂ H ₂₂	166.30	45.70	42.79	13.15	3.254	220.0	260		
(Dimethyl ether) \rightarrow methyl	ether									
1,1-Dimethyl- hydrazine (UDMH)	C ₂ H ₈ N ₂	60.10	32.95	30.03	14.10	2.130	25.0	578	2.73	
Dimethyl sulfoxide	C ₂ H ₆ SO	78.13	29.88	28.19	15.30	1.843	189.0	677	1.89	1.14
1,3 Dioxane	$C_4H_8O_2$	88.10	26.57	24.58	9.66	2.543	105.0	404		
1,4 Dioxane	C ₄ H ₈ O ₂	88.10	26.83	24.84	9.77	2.543	101.1	406	1.74	1.07
Ethane	C ₂ H ₆	30.07	51.87	47.49	12.75	3.725	-88.6	-	-	1.75
Ethanol	C ₂ H ₆ O	46.07	29.67	26.81	12.87	2.084	78.5	837	2.43	1.42
$(Ethene) \rightarrow ethylene$										
Ethyl acetate	C ₄ H ₈ O ₂	88.10	25.41	23.41	12.89	1.816	77.2	367	1.94	1.29
Ethyl acrylate	C ₅ H ₈ O ₂	100.12	27.44	25.69	13.39	1.918	100.0	290		1.14
Ethylamine	C ₂ H ₇ N	45.08	38.63	35.22	13.23	2.662	16.5	_	2.89	1.61
Ethyl benzene	C8H10	106.16	43.00	40.93	12.93	3.165	136.1	339	1.75	1.21
Ethylene	C ₂ H ₄	28.05	50.30	47.17	13.78	3.422	-103.9	_	2.38	1.56
Ethylene glycol	C ₂ H ₆ O ₂	62.07	19.17	17.05	13.22	1.289	197.5	800	2.43	1.56
Ethylene oxide	C ₂ H ₄ O	44.05	29.65	27.65	15.23	1.816	10.7	_	1.97	1.10
(Ethylene trichloride) \rightarrow tr	ichloroethylene									
(Ethyl ether) \rightarrow diethyl eth	er									
Formaldehyde	CH ₂ O	30.03	18.76	17.30	16.23	1.066	-19.3	-	_	1.18
Formic acid	CH ₂ O ₂	46.03	5.53	4.58	13.15	0.348	100.5	476	2.15	0.98
Furan	C ₄ H ₄ O	68.07	30.61	29.32	13.86	2.115	31.4	398	1.69	0.96
a-D-glucose*	$C_6H_{12}O_6$	180.16	15.55	14.08	13.21	1.066	-	-	-	-
$(Glycerine) \rightarrow glycerol$										
Glycerol	C ₃ H ₈ O ₃	92.10	17.95	16.04	13.19	1.216	290.0	800	2.42	1.25
(Glycerol trinitrate) \rightarrow nitr	oglycerin									
<i>n</i> -Heptane	C ₇ H ₁₆	100.20	48.07	44.56	12.68	3.513	98.4	316	2.20	1.66
<i>n</i> -Heptene	C ₇ H ₁₄	98.18	47.44	44.31	12.95	3.422	93.6	317	2.17	1.58
Hexadecane	C ₁₆ H ₃₄	226.43	47.25	43.95	12.70	3.462	286.7	226	2.22	1.64
Hexamethyldisiloxane	C ₆ H ₁₈ Si ₂ O	162.38	38.30	35.80	15.16	2.364	100.1	192	2.01	-
(Hexamethylenetetramine)	\rightarrow methenamine									
<i>n</i> -Hexane	C_6H_{14}	86.17	48.31	44.74	12.68	3.528	68.7	335	2.24	1.66
<i>n</i> -Hexene	C ₆ H ₁₂	84.16	47.57	44.44	12.99	3.422	63.5	333	2.18	1.57
Hydrazine	H ₄ N ₂	32.05	52.08	49.34	49.40	0.998	113.5	1,180	3.08	1.65
Hydrazoic acid	HN ₃	43.02	15.28	14.77	79.40	0.186	35.7	690	_	1.02
Hydrogen	H ₂	2.00	141.79	130.80	16.35	8.000	-252.7	-	_	14.42
$(Hydrogen azide) \rightarrow hydra$	zoic acid									
Hydrogen cyanide	HCN	27.03	13.86	13.05	8.82	1.480	25.7	933	2.61	1.33
Hydrogen sulfide	H ₂ S	34.08	48.54	47.25	16.77	2.817	-60.3	548	-	1.00
Maleic anhydride*	$C_4H_2O_3$	74.04	18.77	18.17	14.01	1.297	202.0	-	_	_
Melamine*	$C_3H_6N_6$	126.13	15.58	14.54	12.73	1.142	-	-		_

Material	Composition	Molecular Weight, <i>W</i>	Gross, Δh ^u _c (MJ/kg)	Net, Δh ¹ _c (MJ/kg)	$\frac{\Delta h_{\rm c}^{\rm l}}{r_{\rm o}}$ (MJ/kg of O ₂)	Oxygen Fuel Mass Ratio, r _o	Boiling Temp., T _b (°C)	Latent Heat of Vaporization, Δh_v (kJ/kg)	Liquid Heat Capacity, C _{pl} (kJ/kg•°C)	Vapor Heat Capacity, C _{pv} (kJ/kg•°C)
Methane	CH ₄	16.04	55.50	50.03	12.51	4.000	-161.5	-	_	2.23
Methanol	CH4O	32.04	22.68	19.94	13.29	1.500	64.8	1,101	2.37	1.37
Methenamine*	C ₆ H ₁₂ N ₄	140.19	29.97	28.08	13.67	2.054	_	-	_	_
2-Methoxy-ethanol	C ₃ H ₈ O ₂	76.09	24.23	21.92	13.03	1.682	124.4	583	2.23	_
Methylamine	CH ₅ N	31.06	34.16	30.62	13.21	2.318	-6.3	_	_	1.61
(2-Methyl 1-butanol) \rightarrow iso	o-amyl alcohol	1					1			
(Methyl chloride) \rightarrow dichlor	oromethane									
Methyl ether	C ₂ H ₆ O	46.07	31.70	28.84	13.84	2.084	-24.9	-	_	1.43
Methyl ethyl ketone	C ₄ H ₈ O	72.10	33.90	31.46	12.89	2.441	79.6	434	2.30	1.43
1-Methylnaphthalene	C ₁₁ H ₁₀	142.19	40.88	39.33	12.95	3.038	244.7	323	1.58	1.12
Methyl meth-acrylate	C ₅ H ₈ O ₂	100.11	27.37	25.61	12.33	2.078	101.0	360	1.91	_
Methyl nitrate	CH ₃ NO ₃	77.04	8.67	7.81	75.10	0.104	64.6	409	2.04	0.99
(2-Methyl propane) \rightarrow iso-	butane	1					1			
Naphthalene*	C ₁₀ H ₈	128.16	40.21	38.84	12.96	2.996	217.9	-	1.18	1.03
Nitrobenzene	C ₆ H ₅ NO ₂	123.11	25.11	24.22	14.90	1.625	210.7	330	1.52	-
Nitroglycerin	C ₃ H ₅ N ₃ O ₉	227.09	6.82	6.34		-	Unstable	462	1.49	_
Nitromethane	CH ₃ NO ₂	61.04	11.62	10.54	15.08	0.699	101.1	567	1.74	0.94
<i>n</i> -Nonane	C ₉ H ₂₀	128.25	47.76	44.33	12.69	3.493	150.6	295	2.10	1.65
Octamethyl-cyclotetrasi- loxane	$\mathrm{C_8H_{24}Si_4O_4}$	296.62	26.90	25.10	14.56	1.725	175.0	127	1.88	-
<i>n</i> -Octane	C_8H_{18}	114.22	47.90	44.44	12.69	3.502	125.6	301	2.20	1.65
iso-Octane	C_8H_{18}	114.22	47.77	44.31	12.65	3.502	117.7	272	2.15	1.65
1-Octene	C_8H_{10}	112.21	47.33	44.20	12.92	3.422	121.3	301	2.19	1.59
$(1\text{-Octylene}) \rightarrow 1\text{-octene}$										
1,2-Pentadiene	C ₅ H ₈	68.11	47.31	44.71	13.60	3.288	44.9	405	2.21	1.55
<i>n</i> -Pentane	C ₅ H ₁₂	72.15	48.64	44.98	12.68	3.548	36.0	357	2.33	1.67
1-Pentene	C_5H_{10}	70.13	47.77	44.64	13.04	3.422	30.0	359	2.16	1.56
Phenol*	C ₆ H ₆ O	94.11	32.45	31.05	13.05	2.380	181.8	433	1.43	1.10
Phosgene	COCl ₂	98.92	1.74	1.74	10.74	0.162	8.3	247	1.02	0.58
Propadiene	C ₃ H ₄	40.06	48.54	46.35	14.51	3.195	-34.6	-	-	1.44
Propane	C_3H_8	44.09	50.35	46.36	12.78	3.629	-42.2	-	2.23	1.67
n-Propanol	C ₃ H ₈ O	60.09	33.61	30.68	12.81	2.396	97.2	686	2.50	1.45
iso-Propanol	C ₃ H ₈ O	60.09	33.38	30.45	12.71	2.396	80.3	663	2.42	1.48
Propene	C ₃ H ₆	42.08	48.92	45.79	13.38	3.422	-47.7	-	-	1.52
$(iso-Propylbenzene) \rightarrow cur$	nene									
$(Propylene) \rightarrow propene$										
iso-Propyl ether	$C_6H_{14}O$	102.17	39.26	36.25	12.86	2.819	67.8	286	2.14	1.55
Propyne	C_3H_4	40.06	48.36	46.17	14.45	3.195	-23.3	-	_	1.51
Styrene	C_8H_8	104.14	42.21	40.52	13.19	3.073	145.2	356	1.76	1.17
Sucrose*	$C_{12}H_{22}O_{11}$	342.30	16.49	15.08	13.44	1.122	-	-	1.24	-
(1,2,3,4-Tetrahydronaphtha	lene) \rightarrow tetralin									
Tetralin	$C_{10}H_{12}$	132.20	42.60	40.60	12.90	3.147	207.0	425	1.64	1.19
Tetranitro-methane	CN ₄ O ₈	196.04	2.20	2.20	-	_	125.7	196	_	_
Toluene	C_7H_8	92.13	42.43	40.52	12.97	3.126	110.4	360	1.67	1.12
Toluene diisocyanate	$C_9H_6N_2O_2$	174.16	24.32	23.56	13.50	1.746	120.0	_	1.65	_
Triethanolamine	C ₆ H ₁₅ NO ₃	149.19	29.29	27.08	15.30	1.770	360.0			_
Triethylamine	C ₆ H ₁₅ N	101.19	43.19	39.93	12.95	3.083	89.5	303	2.22	1.59
1,1,2-Trichloroethane	$C_2H_3Cl_3$	133.42	7.77	7.28	11.02	0.660	114.0	260	1.11	0.67

Material	Composition	Molecular Weight, <i>W</i>	Gross, ∆h ^u _c (MJ/kg)	Net, ∆h ¹ _c (MJ/kg)	$\frac{\Delta h_{\rm c}^{\rm 1}}{r_{\rm o}}$ (MJ/kg of O ₂)	Oxygen Fuel Mass Ratio, r _o	Boiling Temp., T _b (°C)	Latent Heat of Vaporization, Δh_v (kJ/kg)	Liquid Heat Capacity, C _{pl} (kJ/kg•°C)	Vapor Heat Capacity, C _{pv} (kJ/kg•°C)
Trichloro-ethylene	C ₂ HCl ₃	131.40	6.77	6.60	12.05	0.548	86.9	245	1.07	0.61
Trichloro-methane	CHCl ₃	119.39	3.39	3.21	9.60	0.335	61.7	249	0.97	0.55
Trinitromethane	CHN ₃ O ₆	151.04	3.41	3.25	-	-	Unstable	-	-	_
Trinitrotoluene*	C ₇ H ₅ N ₃ O ₆	227.13	15.12	14.64	19.80	0.740	240.0	322	1.40	-
Trioxane	C ₃ H ₆ O ₃	90.08	16.57	15.11	14.17	1.066	114.5	450	-	-
Urea*	CH ₄ ON ₂	60.06	10.52	9.06	11.34	0.799	-	-	-	1.55
Vinyl acetate	C ₄ H ₆ O ₂	86.09	24.18	22.65	13.54	1.673	72.5	167	2.00	1.05
Vinyl acetylene	C_4H_4	52.07	47.05	45.36	14.76	3.073	5.1	-	-	1.41
Vinyl bromide	C ₂ H ₃ Br	106.96	12.10	11.48	13.95	0.823	15.6	-	2.42	0.53
Vinyl chloride	C ₂ H ₃ Cl	62.50	20.02	16.86	11.97	1.408	-13.8	-	-	0.86
$(Vinyl trichloride) \rightarrow 1,1,2$ -trichlorolthane										
Xylenes	C ₈ H ₁₀	106.16	42.89	40.82	12.90	3.165	138–144	343	1.72	1.21
Xylidene	C ₈ H ₁₁ N	121.22	38.28	36.29	12.79	2.838	192.7	366	1.77	_

*Denotes substance in crystalline solid form; otherwise, liquid if $T_b > 25^{\circ}$ C, gaseous if $T_b > 25^{\circ}$ C.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

11.4.4 Plastics

Heats of Combustion and Related Properties of Plastics

Material	Unit Composition	Molecular Weight, <i>W</i>	Gross, Δh ^u (MJ/kg)	Net, ∆h ¹ _c (MJ/kg)	$\frac{\Delta h_{\rm c}^{\rm l}}{r_{\rm o}}$ (MJ/kg of O ₂)	Oxygen Fuel Mass Ratio, r _o	Heat Capacity Solid, C _{ps} (kJ/kg•°C)
Acrylonitrile-butadiene styrene copolymer	-	-	35.25	33.75			1.41-1.59
Bisphenol A epoxy	C _{11.85} H _{20.37} O _{2.83} N _{0.3}	212.10	33.53	31.42	13.41	2.343	
Butadiene-acrylonitrile 37% copolymer	-	-	39.94				
Butadiene/styrene 8.58% copolymer	C _{4.18} H _{6.09}	56.30	44.84	42.49	13.11	3.241	1.94
Butadiene/styrene 25.5% copolymer	C _{4.60} H _{6.29}	61.55	44.19	41.95	13.07	3.209	1.82
Cellulose acetate (triacetate)	C ₁₂ H ₁₆ O ₈	288.14	18.88	17.66	13.25	1.333	1.34
Cellulose acetate-butyrate	C ₁₂ H ₁₈ O ₇	274.27	23.70	22.30	14.67	1.517	1.70
Epoxy, unhardened	C ₃₁ H ₃₆ O _{5.5}	496.63	32.92	31.32	13.05	2.400	
Epoxy, hardened	C ₃₉ H ₄₀ O _{8.5}	644.74	30.27	28.90	13.01	2.221	
Melamine formaldehyde (Formica TM)	C ₆ H ₆ N ₆	162.08	19.33	18.52	12.51	1.481	1.46
Nylon 6	C ₆ H ₁₁ NO	113.08	30.1-31.7	28.0-29.6	12.30	2.335	1.52
Nylon 6,6	C ₁₂ H ₂₂ N ₂ O ₂	226.16	31.6-31.7	29.5–29.6	12.30	2.405	1.70
Nylon 11 (Rilsan)	C ₁₁ H ₂₁ NO	183.14	36.99	34.47	12.33	2.796	1.70-2.30
Phenol formaldehyde	C ₁₅ H ₁₂ O ₂	224.17	27.9–31.6	26.7-30.4	11.80	2.427	1.70
foam			21.6-27.4	20.2-26.2			
Polyacenaphthalene	C ₁₂ H ₈	152.14	39.23	38.14	12.95	2.945	
Polyacrylonitrile	C ₃ H ₃ N	53.04	32.22	30.98	13.70	2.262	1.50
Polyallylphthalate	C ₁₄ H ₁₄ O	198.17	27.74	26.19	9.54	2.745	
$(Polyamides) \rightarrow nylon$	•				•		-
Poly-1,4-butadiene	C ₄ H ₆	54.05	45.19	42.75	13.13	3.256	
Poly-1-butene	C ₄ H ₈	56.05	46.48	43.35	12.65	3.426	1.88
Polycarbonate	C ₁₆ H ₁₄ O ₃	254.19	30.99	29.78	13.14	2.266	1.26
Polycarbon suboxide	C ₃ O ₂	68.03	13.78	13.78	14.64	0.941	
Polychlorotrifluorethylene	C ₂ F ₃ Cl	116.47	1.12	1.12	2.04	0.549	0.92
Polydiphenylbutadiene	C ₁₆ H ₁₀	202.18	39.30	38.20	13.05	2.928	

Material	Unit Composition	Molecular Weight, <i>W</i>	Gross, Δh ^u _c (MJ/kg)	Net, Δh ^l _c (MJ/kg)	$\frac{\Delta h_{\rm c}^{\rm l}}{r_{\rm o}}$ (MJ/kg of O ₂)	Oxygen Fuel Mass Ratio, r _o	Heat Capacity Solid, C _{ps} (kJ/kg•°C)
Polyester, unsaturated	C _{5.77} H _{6.25} O _{1.63}	101.60	21.6-29.8	20.3-28.5	11.90	2.053	1.20-2.30
Polyether, chlorinated	C ₅ H ₈ OCl ₂	154.97	17.84	16.71	12.45	1.342	
Polyethylene	C ₂ H ₄	28.03	46.2-46.5	43.1-43.4	12.63	3.425	1.83-2.30
Polyethylene oxide	C ₂ H ₄ O	44.02	26.65	24.66	13.57	1.817	
Polyethylene terephthalate	C ₁₀ H ₈ O ₄	192.11	22.18	21.27	12.77	1.666	1.00
Polyformaldehyde	CH ₂ O	30.01	16.93	15.86	14.88	1.066	1.46
Poly-1-hexene sulfone	C ₆ H ₁₂ SO ₂	148.13	29.78	28.00	14.40	1.944	
Polyhydrocyanic acid	HCN	27.02	23.26	22.45	15.17	1.480	
(Polyisobutylene) \rightarrow poly-1-butene							
Polyisocyanurate foam	-		26.30	22.2-26.2			
Polyisoprene	C ₅ H ₈	68.06	44.90	42.30	12.90	3.291	
Poly-3-methyl-1-butene	C ₅ H ₁₀	70.06	46.55	43.42	12.67	3.426	
Polymethyl methacrylate	C ₅ H ₈ O ₂	100.06	26.64	24.88	12.97	1.919	1.44
Poly-4-methyl-1-pentene	C ₆ H ₁₂	84.08	46.52	43.39	12.67	3.425	2.18
Poly-a-methylstyrene	C ₉ H ₁₀	118.11	42.31	40.45	13.00	3.116	
Polynitroethylene	C ₂ H ₃ O ₂ N	73.03	15.96	15.06	19.64	0.767	
Polyoxymethylene	CH ₂ O	30.01	16.93	15.65	14.68	1.066	
Polyoxytrimethylene	C ₃ H ₆ O	58.04	31.52	29.25	13.27	2.205	
Poly-1-pentene	C ₅ H ₁₀	70.06	45.58	42.45	12.39	3.426	
Polyphenylacetylene	C ₈ H ₆	102.09	40.00	38.70	13.00	2.978	
Polyphenylene oxide	C ₈ H ₈ O	120.09	34.59	33.13	13.09	2.531	1.34
Polypropene sulfone	C ₃ H ₆ SO ₂	106.10	23.82	22.58	16.64	1.357	
Poly-	C ₃ H ₄ O ₂	72.14	19.35	18.13	13.62	1.331	
Polypropylene	C ₃ H ₆	42.04	46.37	43.23	12.62	3.824	2.10
Polypropylene oxide	C ₃ H ₆ O	58.04	31.17	28.90	13.11	2.205	
Polystyrene	C ₈ H ₈	104.10	41.4-42.5	39.7–39.8	12.93	3.074	1.40
Polystyrene-foam	-		39.70	35.6-40.8			
Polystyrene-foam, FR	-		41.2-42.9				
Polysulfones, butene	C ₄ H ₈ SO ₂	120.11	24.04-26.47	22.25-25.01	14.79	1.598	1.30
Polysulfur	S	32.06	9.72	9.72	9.74	0.998	
Polytetrafluoroethylene	C ₂ F ₄	100.02	5.00	5.00	7.81	0.640	1.02
Polytetrahydrofuran	C ₄ H ₈ O	72.05	34.39	31.85	13.04	2.443	
Polyurea	C ₁₅ H ₁₈ O ₄ N ₄	318.20	24.91	23.67	13.45	1.760	
Polyurethane	C _{6.3} H _{7.1} NO _{2.1}	130.30	23.90	22.70	13.16	1.725	1.75–1.84
Polyurethane-foam	-		26.1-31.6	23.2-28.0			
Polyurethane-foam, FR	-		24.0-25.0				
Polyvinyl acetate	C ₄ H ₆ O ₂	86.05	23.04	21.51	12.86	1.673	
Polyvinyl alcohol	C ₂ H ₄	44.03	25.00	23.01	12.66	1.817	1.70
Polyvinyl butyral	C ₈ H ₁₄ O ₂	142.10	32.90	30.70	13.00	2.365	
Polyvinyl chloride	C ₂ H ₃ Cl	62.48	17.95	16.90	12.00	1.408	0.90-1.20
Polyvinyl-foam	-		22.83				1.30-2.10
Polyvinyl fluoride	C ₂ H ₃ F	46.02	21.70	20.27	10.60	1.912	
Polyvinylidene chloride	C ₂ H ₂ Cl ₂	96.93	10.52	10.07	12.21	0.825	1.34
Polyvinylidene fluoride	C ₂ H ₂ F ₂	64.02	14.77	14.08	11.26	1.250	1.38
Urea formaldehyde	C ₃ H ₆ O ₂ N ₂	102.05	15.90	14.61	13.31	1.098	1.60-2.10
Urea formaldehyde-foam	-	-	14.80				

11.4.5 Miscellaneous Materials

Material	Gross, Δh ^u _c (MJ/kg)	Net, Δh_c^1 (MJ/kg)
Acetate (see cellulose acetate)		
Acrylic fiber	30.6–30.8	
Blasting powder	2.1–2.4	
Butter	38.5	
Celluloid (cellulose nitrate and camphor)	17.5–20.6	16.4–19.2
Cellulose acetate fiber, $C_8H_{12}O_6$	17.8–18.4	16.4-17.0
Cellulose diacetate fiber, $C_{10}H_{14}O_7$	18.7	
Cellulose nitrate, $C_6H_0N_1O_7/C_6H_8N_2O_9/C_6H_7N_3O_{11}$	9.11–13.48	
Cellulose triacetate fiber, $C_{12}H_{16}O_8$	18.8	17.6
Charcoal	33.7–34.7	33.2–34.2
Coal–anthracite	30.9–34.6	30.5–34.2
-bituminous	24.7–36.3	
Coke	28.0-31.0	23.6–35.2
Cork	26.1	28.0-31.0
Cotton	16.5–20.4	
Dynamite	5.4	
Epoxy, C _{11.9} H _{20.4} O _{2.8} N _{0.3} /C _{6.064} H _{7.550} O _{1.222}	32.8–33.5	31.1–31.4
Fat, animal	39.8	
Flint powder	3.0-3.1	
Fuel oil–No. 1	46.1	
-No. 6	42.5	
Gasketing-chlorosulfonated polyethylene	28.5	
(Hypalon)	20.5	
-Vinylidene nuoride/ hexanuoropro	14.0–15.1	
Gasoline	46.8	43.7
Let fuel ID1	+0.0	43.0
-JP3		43.5
–JP4	46.6	43.5
-JP5	45.9	43.0
Kerosene (jet fuel A)	46.4	43.3
Lanolin (wool fat)	40.8	
Lard	40.1	
Leather	18.2–19.8	
Lignin, C _{2.6} H ₃ O	24.7–26.4	23.4–25.1
Lignite	22.4–33.3	
Modacrylic fiber	24.7	
Naphtha	43.0-47.1	40.9-43.9
Neoprene, C ₅ H ₅ Cl–gum	24.3	
foam	9.7–26.8	

Heats of Combustion of Miscellaneous Materials

Material	Gross, Δh ^u _c (MJ/kg)	Net, Δh_c^1 (MJ/kg)
Nomex TM (polymethaphenylene isophthalamide) fiber, $C_{14}H_{10}O_2N_2$	27.0–28.7	
Oil-castor	37.1	
-linseed	39.2–39.4	
-mineral	45.8-46.0	
-olive	39.6	
-solar	41.8	
Paper-brown	16.3–17.9	
-magazine	12.7	
-newsprint	19.7	
-wax	21.5	
Paraffin wax	46.2	43.1
Peat	16.7–21.6	
Petroleum jelly, C _{7.118} H _{12.957} O _{0.091}	45.9	
Rayon fiber	13.6–19.5	
Rubber–buna N	34.7-35.6	
-butyl	45.8	
–isoprene (natural), C ₅ H ₈	44.9	42.3
-latex foam	33.9-40.6	
-GRS	44.2	
tire, auto	32.6	
Silicone rubber (SiC_2H_6O)	15.5-16.8	
foam	14.0–19.5	
Sisal	15.9	
Spandex fiber	31.4	
Starch	17.6	16.2
Straw	15.6	
Sulfur-rhombic		9.28
-monoclinic		9.29
Тоbассо	15.8	
Wheat	15.0	
Wood-beech	20.0	18.7
-birch	20.0	18.7
–Douglas fir	21.0	19.6
-maple	19.1	17.8
-red oak	20.2	18.7
-spruce	21.8	20.4
-white pine	19.2	17.8
–hardboard	19.9	
Woodflour	19.8	
Wool	20.7-26.6	

11.4.6 Selected Metals and Nonmetallic Elements

Element Symbol	Element Name	Oxide Formed	$\Delta h_{\rm c} ({\rm MJ/kg})$
Al	Aluminum	Al ₂ O ₃	31.06
В	Boron	B ₂ O ₃	58.83
Ba	Barium	BaO	4.03
Be	Beryllium	BeO	67.48
Са	Calcium	CaO	15.58
Cd	Cadmium	CdO	2.30
Ce	Cerium	CeO ₂	7.77
Cr	Chromium	Cr ₂ O ₃	10.78
Cu	Copper	CuO	2.48
Fe	Iron	FeO	4.87
Hf	Hafnium	HfO ₂	6.42
Li	Lithium	Li ₂ O	43.08
Mg	Magnesium	MgO	24.73
Na	Sodium	Na ₂ O	9.00
Sr	Strontium	SrO	6.76
Th	Thorium	ThO ₂	5.29
Ti	Titanium	TiO ₂	19.6
U	Uranium	UO ₂	4.56
W	Tungsten	WO ₃	4.59
Zn	Zinc	ZnO	5.37
Zr	Zirconium	ZrO ₂	12.03

Heats of Combustion of Selected Metals and Nonmetallic Elements

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

11.5 Autoignition Temperatures for Liquids

Autoignition Temperatures for Liquids

Fuel	Autoignition Temperature (°C)
Acetaldehyde	185.0
Acetone	537.8
Acetylene	305.0
Acrolein	233.9
Acrylonitrile (564)	481.1
Ammonia	651.1
Aniline	617.2
Benzene	562.2
Benzyl alcohol	436.1
1,2-Butadiene	428.9
Butanone (methyl ethyl ketone)	515.6
1-Butene	383.9
<i>n</i> -Butene	405.0

Fuel	Autoignition Temperature (°C)
<i>d</i> -Camphor	466.1
Carbon disulfide	90.0
Carbon monoxide	608.9
Cyclobutane	426.7
Cyclohexane	260.0
Cyclohexene	265.0
Cyclopentane	361.1
Cyclopropane	497.8
<i>n</i> -Decane	207.8
Diethyl ether	180.0
Ethane	515.0
Ethanol	422.8
Ethyl acetate	426.7
Ethylamine	383.9
Ethylene oxide	428.9
<i>n</i> -Heptane	222.8
<i>n</i> -Hexane	408.9
Hydrogen	400.0
iso-Propanol	398.9
Methane	600.0
Methanol	463.9
Methyl formate	456.1
<i>n</i> -Nonane	206.1
<i>n</i> -Octane	220.0
<i>n</i> -Pentane	260.0
1-Pentene	217.2
Propane	450.0
<i>n</i> -Propanol	371.1
Propene	455.0
Toluene	536.1
<i>m</i> -Xylene	527.8
o-Xylene	463.9
<i>p</i> -Xylene	528.9

For more information, see Table C.1 and Chapter 18, "Ignition of Liquids," in the SFPE *Handbook of Fire Protection Engineering*, fifth edition.

11.6	Critical Heat Flux and	Thermal Res	ponse Parameter	of Materials
------	-------------------------------	--------------------	-----------------	--------------

	CHF (k	W/m²)	TRP ($kW \cdot s^{1/2}/m^2$)		
Material	ASTM E2058 FPA	ASTM E1354 Cone	ASTM E2058 FPA	ASTM E1354 Cone	
Natural Materials					
Flour	10	-	218	—	
Sugar	10	-	255	_	
Tissue paper	10	_	95	_	
Newspaper	10	-	108	—	
Wood (red oak)	10	-	134	—	
Wood (Douglas fir)	10	-	138	_	
Wood (Douglas fir)/fire retarded (FR)	10	_	251	_	
Wood (hemlock)	-	-	_	175	
Corrugated paper (light)	10	-	152	-	
Corrugated paper (heavy), with:					
No coating	10	_	189	_	
Coating (10% by weight)	15	_	435	_	
Coating (15% by weight)	15	_	526	_	
Coating (20% by weight)	15	_	714	_	
Wool 100%	_	_	_	252	
Synthetics (Ordinary Polymers)		,			
Acrylic fiber 100%	_	_	_	180	
Acrylic (modified)/FR	_	_	_	526	
Acrylonitrile-butadiene- styrene (ABS)	_	9–15	_	317–365	
ABS-FR	-	13	_	330	
Butyl rubber (BR, polyisobutylene)	_	19	_	211	
Epoxy (EP)	13	20	162	_	
Isophthalic polyester	_	_	_	296	
Nitrile-butadiene (Buna-N, NBR)	_	26	_	308	
Polyamide (PA, Nylon) 6	15	15-20	154-270	379-461	
PA 66	_	15-21	_	352	
PA 11	_	15-21	_	352	
PPO-PS	_	_	_	455	
Polyethylenephthalate (PEN)	_	24	_	545	
Polyethyleneterephthalate (PET)	10	_	174	_	
Polyethylene (PE) high density (HD)	15	15	321-454	343	
PE (cross-linked)	15	-	224-301	442	
PE (cross-linked)/nonhalogenated FR	15	_	652-700	581	
Polyisoprene (natural rubber, NR)	10	17	174	294	
Polymethylmethacrylate (PMMA)	10	6–23	274	274	
Polymethylpentene (PMP)	-	-	_	_	
Polyoxymethylene (POM)	13	-	250-269	-	

	CHF (k	W/m²)	TRP ($kW \cdot s^{1/2}/m^2$)		
Material	ASTM E2058 FPA	ASTM E1354 Cone	ASTM E2058 FPA	ASTM E1354 Cone	
Polypropylene (PP)	10-15	15	277-333	193–336	
PP/FR panel	15	—	315	—	
Polyphenyleneether (PPE)	—	—	_	323	
Polystyrene (PS)	13	—	162	—	
PS-FR	_	_	221-667	—	
Polyvinyl ester	—	—	_	263	
Polyvinyl ester panels	13–15	—	440-700	—	
Styrene-butadiene rubber (SBR)	_	10-15	_	198	
Unsaturated polyester (UPT)	-	—	343	-	
Vinyl ester (VE)	-	—	-	285	
Vinyl thermoplastic elastomer	_	_	294	_	
Foams (Wall, Ceiling Insulation Materials, etc.)					
Polyurethanes	13-40	_	55-221	—	
Polystyrenes	10-15	_	111–317	_	
Latex	16	—	113-172	_	
Phenolic	20	—	610	-	
Synthetic High-Temperature Engineered Polymers	5				
Melamine formaldehyde (MF)	—	25	_	324	
Phenol formaldehyde (PF)	_	15–26	_	537	
Polyamideimide (PAI, Torlon®)	—	40–50	_	378	
Polybenzimidazole (PBI)	_	~60	_	—	
Polybenzoylphenylene (PX)	_	—	_	626	
Polycarbonate (PC)	15	15-20	357-455	455	
PC panel	16	—	420	—	
PC/ABS (70/30)	—	—	_	344	
PC/ABS-FR	—	—	_	391	
Polydimethylphenyleneoxide (PPO)	—	19	_	342	
Polyethylenephthalate (PEN)	—	—	545	—	
Polyethersulfone (PESU, Radel-A®)	_	19–30	_	360	
Polyether ether ketone (PEEK)	30	30-40	550	623	
Polyetherimide (PEI)	25	25-40	435	435	
Polyphenyleneether (PPE)	—	—	_	323	
Polyphenylenesulfide (PPS)	_	35–38	_	395	
Polyphenylsulfone (Radel-R [®] PPSU)	_	32–35	512	512	
Polyphenyleneether (PPE)	_	_	—	323	
Polysulfone (PSU)	30	26	469	424	
Polydimethylsiloxane (SIR)	_	34	_	429	

	CHF (k	W/m²)	TRP ($kW \cdot s^{1/2}/m^2$)		
Material	ASTM E2058 FPA	ASTM E1354 Cone	ASTM E2058 FPA	ASTM E1354 Cone	
Halogenated					
Polychloroprene (neoprene, CR)	_	20-37	—	245	
Polytetrafluoroethylene-perfluoroether (PFA)	-	-	—	787	
Polytetrafluoroethylene (PTFE)	50	-	680	-	
Polytrifluoroethylene (P3FE)	_	-	-	504	
Polyvinylidenefluoride (PVDF)	_	_	609	_	
Polyvinylfluoride (PVF)	_	_	_	303	
Polychlorotrifluoroethylene (CTFE)	_	30	_	460	
Polyethylene-tetrafluoroethyl-ene (ETFE, Tefzel [®])	25	17–27	481	478	
Polyethylenechlorotrifluoro-ethylene (ECTFE)	38	38–74	450	410	
Fluorinated ethylene propylene (FEP, Teflon [®])	38–50	_	680	_	
FEP fabric	50	_	299	_	
FEP coated on metal	20	_	488	_	
Polytrifluoroethylene (P3FE)	_	_	_	504	
Polyvinylchloride (PVC, flexible)	10	21	215-263	194	
PVC flexible (LOI = 0.20)	_	-	_	285	
PVC flexible (LOI = 0.25)	_	_	_	401	
PVC flexible, FR (alkyl aryl phosphate, $LOI = 0.28$)	_	_	_	401	
PVC flexible, FR (Sb2O3, $LOI = 0.30$)	_	_	_	397	
PVC flexible, FR (tertiary phosphate, $LOI = 0.34$)	_	_	_	345	
PVC flexible, FR	_	_	_	222–263	
PVC, rigid	15	15–28	357	357-418	
PVC, rigid (LOI = 0.50)	_	_	_	388	
PVC sheets	15	-	446–590	_	
PVC panel	17	_	321	_	
PVC fabric	26	_	217	_	
Chlorinated PVC (CPVC)	40	40	435	590-1,111	
Polyvinylfluoride (PVF)	_	_	_	303	
Composite and Fiber Reinforced (Glass-Gl and G	raphite–Gr)	•	1		
Acrylic/Gl	_	_	_	180	
Bismaleimide (BMI)/Gr	_	_	_	513-608	
Cyanate ester/Gl	_	_	_	302	
Epoxy (EP)/Gl (thin sheet)	10	_	156	198	
EP/G1	10-15	_	388–540	288-665	
EP/Gr	15	_	395-481	395–554	
EP/Gr/intumescent coating (IC)	_	-	962		
EP/Gr/ceramic coating (CC)	_	-	2,273		
EP/Gr/CC/IC	_	_	1,786		
EP/Kevlar (thin sheet)	_	-	_	120	

	CHF (k	W/m²)	TRP ($kW \cdot s^{1/2}/m^2$)		
Material	ASTM E2058 FPA	ASTM E1354 Cone	ASTM E2058 FPA	ASTM E1354 Cone	
Graphite composite	40	-	400	-	
Isophthalic polyester/Gl (77%)	-	-	-	426	
Polyarylsulfone/Gr	-	-	—	360	
Polyamide (PA6)/Gl (10%)	-	-	—	303	
PA6/G1 (20%)	-	-	—	315	
PA6/Gl (30%)	-	-	-	318	
PA6/Gl (50%)	_	_	_	359-371	
Polybutyleneterephthalate (PBT)/Gl (10%)	_	_	_	317	
PBT/G1 (20%)	-	-	_	308	
PBT/G1 (30%)	_	_	_	325	
PBT/G1 (50%)	_	_	_	381	
Polycarbonate (PC)/Gl (10%)	_	_	_	383	
PC/Gl (20%)	_	_	_	362	
PC/Gl (30%)	_	_	_	373	
PC/Gl (50%)	-	-	_	402	
Polyether ether ketone (PEEK)/Gl (30%)	_	-	_	301	
PEEK/Gr	-	_	_	514	
Polyester (PEST)/Gl	10-15	_	275-406	_	
Polyether ketoneketone (PEKK)/Gl	_	_	_	710	
Polyethersulfone (PESU)/Gl (30%)	-	_	_	256	
Polyethersulfone (PESU)/Gr	-	_	_	352	
Polyimide/Gl	_	_	844	_	
Phenol formaldehyde (PF)/Gl	20	_	_	610	
Phenol/Gl (thin sheet)	33	_	105	172	
Phenol/Gl (thick sheet)	20	_	610	_	
Phenolic/Gl	-	_	_	382–998	
Phenolic/Gl (45%)	_	_	_	683	
Phenolic/Gr	20	_	333	398–982	
Phenolic/PE fibers	-	_	_	267	
Phenolic/aramid fibers	-	-	_	287	
Phenolic/Kevlar (thin sheet)	20	-	185	258	
Phenolic/Kevlar (thick sheet)	15	_	403	_	
Phenolic/Gr/ceramic coating	-	_	807	_	
Phenolic/Gr/intumescent coating	_	_	1,563	_	
Phenolic laminate/Gl (45%)	-	-	_	683	
Polypropylene (PP)/Gl panel	-	-	-	315-377	
Polyvinylester/Gl	-	-	281	312-429	
Polyvinylester/Gl (69%)	-	-	_	444	
Polyvinylester/Gl/ceramic coating (CC)	_	_	676		

	CHF (k	W/m ²)	TRP ($kW \cdot s^{1/2}/m^2$)		
Material	ASTM E2058 FPA	ASTM E1354 Cone	ASTM E2058 FPA	ASTM E1354 Cone	
Polyvinylester/Gl/intumescent coating (IC)	_	_	1,471	_	
Polyvinylester/Gl/IC/CC	_	-	1,923	-	
Polyphenylenesulfide (PPS)/Gl	_	-	-	588-623	
PPS/Gr	_	_	—	330–510	
Materials with Fiberweb, Netlike, and Multiplex S	tructures				
Polypropylenes	8–15	-	108–417	_	
Polyester-polypropylene	10	-	139	_	
Wood pulp-polypropylene	8	-	90	_	
Polyester	8-18	-	94–383	—	
Rayon	14–17	-	161-227	—	
Polyester-rayon	13–17	-	119–286	—	
Wool-nylon	15	-	293	-	
Nylon	13–16	-	149–217	—	
Cellulose	15	_	264	_	
Cellulose-polyester	13	_	159	_	
Electrical Cables-Power					
PVC/PVC	13–25	_	156–341	_	
PE/PVC	15	-	221-244	-	
PVC/PE	15	_	263	_	
Silicone (Si)/PVC	19	_	212	_	
Si/cross-linked Polyolefin (XLPO)	25-30	_	435-457	_	
Ethylene-propylene rubber (EPR)/EPR	20–23	-	467-567	-	
Cross-linked PE (XLPE)/XLPE	20–25	_	273-386	_	
XLPE/ethyl-vinyl acetate (EVA)	12–22	_	442-503	_	
XLPE/neoprene	15	_	291	_	
XLPO/XLPO	16–25	-	461-535	-	
XLPO/polyvinylidine fluoride (PVF)/XLPO	14–17	-	413-639	—	
EPR/chlorosulfonated PE	14–19	_	283-416	_	
EPR, FR	14–28	_	289-448	_	
Electrical Cables-Communications					
PVC/PVC	15	-	131	—	
PE/PVC	20	-	183	—	
XLPE/XLPO	20	-	461–535	—	
Si/XLPO	20	_	457	_	
EPR-FR	19	_	295	_	
Chlorinated PE	12		217	_	
Polyethylene-tetrafluoroethylene (ETFE)/EVA	22	_	454	_	
PVC/PVF	30	_	264		
Fluorinated ethylene propylene (FEP)/FEP	36	_	638–652	_	

	CHF (k	W/m ²)	TRP (kW•s ^{1/2} /m ²)		
Material	ASTM E2058 FPA	ASTM E1354 Cone	ASTM E2058 FPA	ASTM E1354 Cone	
Conveyor Belts					
Styrene-butadiene rubber (SBR)	10-15	—	336-429	_	
Chloroprene rubber (CR)	20	—	760	_	
CR/SBR	15	—	400	_	
PVC	15-20	—	343-640	_	

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

11.7 Thermal Properties and Thermal Response Properties of Polymers

Material	T _{ig}	ρ $c_{\rm P}$		k	TRP ($kW \cdot s^{1/2}/m^2$)	
	(°C)	(10^{-3} kg/m^3)	(kJ/kg•K)	$(10^{-3} \text{ kW/m} \cdot \text{K})$	Measured	Calculated
Synthetic (Ordinary Polymers)	,	1	<u> </u>	1		
Acrylonitrile-butadiene-styrene (ABS)	394	1.05	1.50	0.26	317-365	212
Polybutadiene (BDR)	378	0.97	1.96	0.22	_	205
Butyl rubber (BR, polyisobutylene)	330	0.92	1.96	0.13	211	133
Cellulose acetate (CA)	348	1.25	1.67	0.25	_	210
Cellulose acetate butyrate (CAB)	_	1.20	1.46	0.25	_	_
Cellulose acetate propionate (CAP)	_	1.21	1.46	0.25	_	_
Cyanate ester (typical) (CE)	468	1.23	1.11	0.19	_	202
Cellulose nitrate (CN)	_	1.38	1.46	0.23	_	_
Cellulose propionate (CP)	_	1.30	1.46	0.20	_	_
Diallylphthalate (DAP)	_	1.35	1.32	0.21	_	_
DAP/glass fibers	_	1.80	1.69	0.42	_	_
Ethylene-acrylic acid salt (EAA ionomer)	_	0.95	1.62	0.26	_	_
Epoxy (EP)	427	1.20	1.70	0.19	162	225
EP/Gl	-	1.80	1.60	0.42	_	_
Epoxy novolac (EPN)	_	1.21	1.26	0.19	_	_
Ethylene-propylene diene (EPDM)	-	0.93	2.00	0.20	_	-
Ethylene vinyl acetate (EVA)	-	0.93	1.37	0.34	_	—
Nitrile-butadiene (Buna-N, NBR)	-	1.35	1.33	0.25	308	_
Polyamide (PA, nylon) 6	432-497	1.13-1.20	1.55-2.19	0.24	154-461	236-336
PA 6/glass fibers	390	1.38	1.34	0.22	_	-
PA 66	456	1.14	1.57	0.23	352	248
PA 11	-	1.12	1.74	0.28	352	_
PA 11/glass fibers	_	1.35	1.76	0.37	_	_
PA 12	_	1.04-1.01	1.69–1.79	0.18-0.25	_	_
PA 610	_	1.10	1.51	0.23	_	_
PA 612	_	1.08	1.59	0.22	_	_
Polyacrylonitrile (PAN)	460	1.15	1.30	0.26	_	243
Polyarylate (PAR)		1.21	1.20	0.18	_	_

Material	T _{ig}	ρ	C _P	k	$TRP (kW \cdot s^{1/2}/m^2)$		
	(°C)	(10 ⁻³ kg/m ³)	(kJ/kg•K)	$(10^{-3} \text{ kW/m} \cdot \text{K})$	Measured	Calculated	
Polyamideimide (PAI)	526	1.42	1.00	0.24	_	262	
Polybutene (PB)	_	0.92	2.09	0.22	_	_	
Polybutyleneterephthalate (PBT)	382	1.35	1.61	0.22	_	222	
Polyimide (PI)	_	1.40	1.10	0.11	_	_	
Polyethyleneterephthalate (PET)	407	1.35	1.15	0.20	174	191	
PET/glass fibers	_	1.70	1.20	0.29	_	_	
Polyethylene (PE) high density (HD)	380-443	0.94–0.96	2.00-2.15	0.42-0.43	321-454	283-353	
PE low density	377	0.93	1.55	0.30-0.38	—	208–234	
PE medium density	_	0.93	1.70	0.40	—	-	
Polyethyleneoxide (PEO)	-	1.13	2.01	0.21	_	—	
Polyisoprene (natural rubber, NR)	297	0.92	1.55	0.14	174–294	110	
Polyethylmethacrylate (PEMA)	-	1.13	1.47	0.18	—	-	
Polymethylmethacrylate (PMMA)	378–383	1.19	2.09	0.27	274	264	
Polymethylpentene (PMP)	_	0.83	1.73	0.17	—	_	
Polymethyl styrene (PMS)	-	1.02	1.28	0.20	—	-	
Polyoxymethylene (POM)	374	1.42	1.92	0.27	250–269	269	
Polypropylene (PP)	443	0.96	2.16	0.20	193–336	242	
Polystyrene (PS)	356	1.05	1.25	0.14	162	128	
PS/glass fibers	-	1.29	1.05	0.13	—	-	
Polyisocyanurate (PU) rigid	378	1.27	1.67	0.21	—	-	
Polyurethane rubber (PUR)	356	1.10	1.76	0.19	_	181	
Polyurethane thermoplastic (TPU)	271	1.27	1.67	0.21	—	149	
Polyvinyl acetate (PVAC)	-	1.19	1.33	0.16	—	-	
Polyvinylalcohol (PVOH)	-	1.35	1.55	0.20	—	-	
Styrene-butadiene rubber (SBR)	_	1.10	1.88	0.17	198	-	
Styrene-acrylonitrile (SAN)	368	1.07	1.38	0.15	—	145	
Unsaturated polyester (UPT)	380	1.23	1.30	0.17	343	166	
UPT/glass fibers	-	1.65	1.05	0.42	—	-	
Vinyl ester (VE)	_	1.11	1.30	0.25	285	_	
Synthetic High-Temperature Engineered Pol	lymers						
Melamine formaldehyde (MF)	350	1.25	1.67	0.25	324	211	
MF/glass fibers	-	1.75	1.67	0.44	_	_	
Phenol formaldehyde (PF)	429	1.30	1.42	0.25	537	246	
PF/glass fibers	580	1.85	1.26	0.40	610	479	
Polyamideimide (PAI, Torlon [®])	526	1.42	1.00	0.24	378	262	
Polybenzimidazole (PBI)	_	1.30	0.93	0.41	—	_	
Polybenzoylphenylene (PX)	_	1.22	1.30	0.32	626	_	
Polycarbonate (PC)	500-580	1.20	1.20-1.22	0.20-0.21	357-455	228-296	
PC/glass fibers	_	1.43	1.10	0.21	402	_	
Polyethersulfone (PESU, Radel-A®)	502	1.40	1.12	0.18	360	227	

Material	Material T_{ig} ρ		c _p	k	TRP (kW•s ^{1/2} /m ²)		
	(°C)	(10^{-3} kg/m^3)	(kJ/kg•K)	$(10^{-3} \text{ kW/m} \cdot \text{K})$	Measured	Calculated	
Polyaryl ether ketone (PAEK)	_	1.30	1.02	0.30	_	_	
Polyether ether ketone (PEEK)	570-580	1.31-1.32	1.70-1.80	0.20-0.25	550	325-383	
Polyetherketoneketone (PEKK)	_	1.28	1.00	0.22	_	_	
Polyetherimide (PEI)	528-540	1.27	1.22-1.40	0.22-0.23	435	262–295	
Polyphthalamide (PPA)	_	1.17	1.40	0.15	_	_	
Polyphenyleneether (PPE)	426	1.10	1.19	0.23	323	198	
Polydimethyleneoxide (PPO)	418	1.11	1.25	0.16	342	166	
PPO/glass fibers	-	1.32	1.31	0.17	—	-	
Polyphenylenesulfide (PPS)	575	1.30	1.02	0.29	395	305	
Polyphenylsulfone (Radel-R [®] PPSU)	575	1.32	1.01	0.18	512	241	
Polyphenyleneether (PPE)	426	1.10	1.19	0.23	323	-	
Polysulfone (PSU)	510-580	1.24	1.11-1.30	0.26-0.28	424-469	259–334	
Polydimethylsiloxane (SI)	_	1.24	1.30	0.28	—	—	
Silicone/glass fibers (Si/G)	_	1.90	1.17	0.30	_	_	
Silicone rubber (SIR)	407	0.97	1.59	0.23	429	204	
Urea formaldehyde (UF)	—	1.25	1.55	0.25	_	—	
Halogenated Polymers							
Polychloroprene (neoprene, CR)	406	1.42	1.12	0.19	245	188	
Polytetrafluoroethylene-perfluoroether (PFA)	—	2.15	1.00	0.25	787	—	
PFA/glass fibers	_	1.85	1.26	0.40	_	_	
Polytetrafluoroethylene (PTFE)	630–700	2.15-2.18	1.00-1.05	0.25	680	396-456	
Polytrifluoroethylene (P3FE)	—	1.83	1.08	0.31	504	—	
Polyvinylidenefluoride (PVDF)	643	1.76	1.30	0.13	609	301	
Polyvinylfluoride (PVF)	476	1.48	1.30	0.13	303	202	
Polychlorotrifluoroethylene (CTFE)	580	1.67-2.11	0.90-0.92	0.22-0.23	460	285–332	
Polyethylene-tetrafluoroethylene (ETFE, Tefzel [®])	540	1.70	0.90-1.00	0.23-0.24	478–481	273–294	
Polyethylenechlorotrifluoroethylene (ECTFE)	613	1.69	1.00-1.17	0.15-0.16	410-450	264-296	
Fluorinated ethylene propylene (FEP, Teflon [®])	630–700	2.15	1.17–1.20	0.25	680	428-484	
Polyvinylchloride (PVC, flexible)	318-374	1.26-1.95	1.14-1.38	0.17-0.26	194–263	130–263	
PVC, rigid 395		1.42	0.98	0.19	357-418	171	
Chlorinated PVC (CPVC)	643	1.50	0.78	0.22	435	280	
Polyvinylidenechloride (PVDC)	468	1.70	1.07	0.13	_	193	

11.8 Yields of Fire Products and Heats of Combustion for Well-Ventilated Fires^a

Material	$\Delta H_{\rm T}$	<i>y</i> _{CO₂}	y _{co}	y _{ch}	$y_{\rm S}$	$\Delta H_{\rm ch}$	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$	
material	(kJ/g)		(g/g)			(kJ/g)			
Common Gases									
Methane	50.1	2.72	—	_	—	49.6	42.6	7.0	
Ethane	47.1	2.85	0.001	0.001	0.013	45.7	34.1	11.6	
Propane	46.0	2.85	0.005	0.001	0.024	43.7	31.2	12.5	
Butane	45.4	2.85	0.007	0.003	0.029	42.6	29.6	13.0	
Ethylene	48.0	2.72	0.013	0.005	0.043	41.5	27.3	14.2	
Propylene	46.4	2.74	0.017	0.006	0.095	40.5	25.6	14.9	
1,3-Butadiene	44.6	2.46	0.048	0.014	0.125	33.6	15.4	18.2	
Acetylene	47.8	2.60	0.042	0.013	0.096	36.7	18.7	18.0	
Common Liquids									
Methyl alcohol	20.0	1.31	0.001	—	_	19.1	16.1	3.0	
Ethyl alcohol	27.7	1.77	0.001	0.001	0.008	25.6	19.0	6.5	
Isopropyl alcohol	31.8	2.01	0.003	0.001	0.015	29.0	20.6	8.5	
Acetone	29.7	2.14	0.003	0.001	0.014	27.9	20.3	7.6	
Methylethyl ketone	32.7	2.29	0.004	0.001	0.018	30.6	22.1	8.6	
Heptane	44.6	2.85	0.010	0.004	0.037	41.2	27.6	13.6	
Octane	44.5	2.84	0.011	0.004	0.038	41.0	27.3	13.7	
Kerosene	44.1	2.83	0.012	0.004	0.042	40.3	26.2	14.1	
Benzene	40.1	2.33	0.067	0.018	0.181	27.6	11.0	16.5	
Toluene	39.7	2.34	0.066	0.018	0.178	27.7	11.2	16.5	
Styrene	39.4	2.35	0.065	0.019	0.177	27.8	11.2	16.6	
Hydrocarbon	43.9	2.64	0.019	0.007	0.059	36.9	24.5	12.4	
Mineral oil	41.5	2.37	0.041	0.012	0.097	31.7	—	—	
Polydimethyl siloxane	25.1	0.93	0.004	0.032	0.232	19.6	-	_	
Silicone	25.1	0.72	0.006	0.008	—	15.2	12.7	2.5	
Chemicals and Solvents									
Tetrahydrofuran (C_4H_8O)	32.2	2.29	0.021	_	—	30.3	_	_	
Phenol (C ₆ H ₆ O)	31.0	2.63	0.057	_	0.099	27.6	13.3	14.3	
Acetonitrile (C_2H_3N)	29.6	2.04	0.025	—	0.026	29.0	23.0	6.0	
Ethylisonicotate ($C_8H_9O_2N$)	26.3	2.37	0.029	—	0.142	24.3	12.8	11.5	
Adiponitrile $(C_6H_8N_2)$	33.1	2.35	0.045	—	0.045	31.1	22.1	9.0	
Hexamethylenediamine $(C_6H_{16}N_2)$	35.3	2.28	0.029	—	0.045	32.6	15.7	16.9	
Toluenediisocyanate $(C_9H_6O_2N_2)$	23.6	1.77	0.052	—	0.141	19.3	11.1	8.2	
Diphenylmethanediisocyanate MDI	27.1	0.95	0.042	_	0.154	19.6	13.7	5.9	
Polymeric MDI ($C_{23}H_{19}O_3N_3$)	29.6	1.22	0.032		0.165	23.3	15.0	8.3	
Isoproturon $(C_{12}H_{18}ON_2)$	32.8	1.70	0.056	_	0.115	23.9	14.0	9.9	
3-Chloropropene (C_3H_5Cl)	23.0	0.75	0.076	_	0.179	10.8	6.9	3.9	
Monochlorobenzene ($C_{c}H_{s}Cl$)	26.4	0.86	0.083	_	0.232	11.2	_	_	

Yields of Fire Products and Chemical, Convective, and Radiative Heats of Combustion for Well-Ventilated Fires
Material	ΔH_{T}	Усо2	y _{co}	y _{ch}	y _s	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$
Matchai	(kJ/g)		(g/	/g)			(kJ/g)	
Dichloromethane (CH_2Cl_2)	6.0	0.11	0.088	_	0.081	2.0	_	
1,3-Dichloropropene ($C_3H_4Cl_2$)	14.2	0.35	0.090	_	0.169	5.6		_
Ethylmonochloroacetate (C ₄ H ₇ O ₂ Cl)	15.7	1.24	0.019	_	0.138	14.1	10.1	4.0
Chloronitrobenzoic acid (C ₇ H ₄ O ₄ NCl)	15.9	0.39	0.057	_	_	4.4		_
Aclonifen (C ₁₂ H ₉ O ₃ N ₂ Cl)	19.7	0.68	0.063	_	0.186	7.0		_
2,6-Dichlorobenzonitrile (dichlobenil) (C ₇ H ₃ NCl ₂)	17.8	0.39	0.068	_	_	4.3	_	_
Diuron $(C_9H_{10}ON_2Cl_2)$	20.3	0.76	0.080	_	0.159	10.2	7.7	2.5
Trifluoromethylbenzene ($C_6H_5CF_3$)	18.7	1.19	0.069	_	0.185	10.8	5.1	5.7
Metatrifluoromethylphenylacetonitrile $(C_9H_6NF_3)$	16.0	0.89	0.058	_	0.168	7.3	4.0	3.3
Tetramethylthiurammonosulfide $(C_6H_{12}N_2S_3)$	22.6	1.06	0.041	_	_	19.6	_	—
Methylthiopropionylaldehyde (C_4H_8OS)	25.0	1.62	0.001	_	0.005	23.8	18.8	5.0
Pesticides								
2,4-D acid (herbicide, $C_8H_6O_3Cl_2$)	11.5	0.50	0.074	_	0.163	4.5	3.0	1.5
Mancozeb $(C_4H_6N_2S_4Mn)_iZn_{0,4})$	14.0	0.50	_	_	_	9.5		_
Folpel $(C_9H_4O_2NSCl_3)$	9.1	0.37	0.072	_	0.205	3.6		_
Chlorfenvinphos (C ₁₂ H ₂₄ O ₄ Cl ₃ P)	18.0	0.43	0.011	_	0.288	7.7		_
Chlormephos ($C_5H_{12}O_2S_2CIP$)	19.1	0.51	0.075	_	0.055	13.9	_	_
Natural Materials								
Tissue paper	_	_	_	_		11.4	6.7	4.7
Newspaper	_	_	_	_	_	14.4	_	_
Wood (red oak)	17.1	1.27	0.004	0.001	0.015	12.4	7.8	4.6
Wood (Douglas fir)	16.4	1.31	0.004	0.001		13.0	8.1	4.9
Wood (pine)	17.9	1.33	0.005	0.001		12.4	8.7	3.7
Corrugated paper		_	_	_		13.2	_	_
Wood (hemlock) ^b		_		_	0.015	13.3	_	_
Wool 100% b		_	_	_	0.008	19.5	_	_
Synthetic Materials—Solids (abbreviation	s/names in	the nom	enclature)					
ABS ^b	_	_	_	_	0.105	30.0		_
РОМ	15.4	1.40	0.001	0.001	_	14.4	11.2	3.2
PMMA	25.2	2.12	0.010	0.001	0.022	24.2	16.6	7.6
PE	43.6	2.76	0.024	0.007	0.060	38.4	21.8	16.6
PP	43.4	2.79	0.024	0.006	0.059	38.6	22.6	0
PS	39.2	2.33	0.060	0.014	0.164	27.0	11.0	16.0
Silicone	21.7	0.96	0.021	0.006	0.065	10.6	7.3	3.3
Polyester-1	32.5	1.65	0.070	0.020	0.091	20.6	10.8	9.8
Polyester-2	32.5	1.56	0.080	0.029	0.089	19.5		
Epoxy-1	28.8	1.59	0.080	0.030		17.1	8.5	8.6
Epoxy-2	28.8	1.16	0.086	0.026	0.098	12.3	_	_

Material	$\Delta H_{\rm T}$ $y_{\rm CO_2}$		y _{co}	y _{CO} y _{ch}		ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$
Wateriai	(kJ/g)		(g/	/g)			(kJ/g)	
Nylon	30.8	2.06	0.038	0.016	0.075	27.1	16.3	10.8
Polyamide-6 ^b	—	_	_	_	0.011	28.8	—	—
IPST ^b	—	_	—	_	0.080	23.3	—	—
PVEST ^b	—	_	—	_	0.076	22.0	—	—
Silicone rubber	21.7	0.96	0.021	0.005	0.078	10.9	—	=
Polyether ether ketone (PEEK- $CH_{0.63}O_{0.16}$)	31.3	1.6	0.029	_	0.008	17.5	—	—
Polysulfone (PSO- $CH_{0.81}O_{0.15}S_{0.04}$)	29.0	1.8	0.034	_	0.020	24.3	—	—
Polyethersulfone (PES-CH _{0.67} O _{0.21} S _{0.08})	25.2	1.5	0.040	_	0.021	20.4	—	—
Polyetherimide (PEI-CH _{0.68} N _{0.05} O _{0.14})	30.1	2.0	0.026	_	0.014	27.2	—	=
Polycarbonate (PC-CH _{0.88} O _{0.13})	31.6	1.5	0.054	_	0.112	18.4	—	=
Polyurethane (Flexible) Foams								
GM21	26.2	1.55	0.010	0.002	0.131	17.8	8.6	9.2
GM23	27.2	1.51	0.031	0.005	0.227	19.0	10.3	8.7
GM25	24.6	1.50	0.028	0.005	0.194	17.0	7.2	9.8
GM27	23.2	1.57	0.042	0.004	0.198	16.4	7.6	8.8
Polyurethane (Rigid) Foams								
GM29	26.0	1.52	0.031	0.003	0.130	16.4	6.8	9.6
GM31	25.0	1.53	0.038	0.002	0.125	15.8	7.1	8.8
GM35	28.0	1.58	0.025	0.001	0.104	17.6	7.8	9.8
GM37	28.0	1.63	0.024	0.001	0.113	17.9	8.7	9.2
GM41	26.2	1.18	0.046	0.004	_	15.7	5.7	10.0
GM43	22.2	1.11	0.051	0.004	_	14.8	6.4	8.4
Polystyrene Foams								
GM47	38.1	2.30	0.060	0.014	0.180	25.9	11.4	14.5
GM49	38.2	2.30	0.065	0.016	0.210	25.6	9.9	15.7
GM51	35.6	2.34	0.058	0.013	0.185	24.6	10.4	14.2
GM53	37.6	2.34	0.060	0.015	0.200	25.9	11.2	14.7
Polyethylene Foams								
1	41.2	2.62	0.020	0.004	0.056	34.4	20.2	14.2
2	40.8	2.78	0.026	0.008	0.102	36.1	20.6	15.5
3	40.8	2.60	0.020	0.004	0.076	33.8	18.2	15.6
4	40.8	2.51	0.015	0.005	0.071	32.6	19.1	13.5
Phenolic Foams								
1 ^b	_	_	_	_	0.002	10.0		—
2 ^b				_		10.0		_
Halogenated Materials (abbreviations/nan	nes in the n	nomencla	ture)					
Polyethylene with:								
25% chlorine	31.6	1.71	0.042	0.016	0.115	22.6	10.0	12.6
36% chlorine	26.3	0.83	0.051	0.017	0.139	10.6	6.4	4.2
48% chlorine	20.6	0.59	0.049	0.015	0.134	7.2	3.9	3.3
PVC	16.4	0.46	0.063	0.023	0.172	5.7	3.1	2.6

Material	ΔH_{T}	Усо2	y _{co}	y _{ch}	$y_{\rm S}$	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$
Triaterial	(kJ/g)		(g/	/g)			(kJ/g)	
PVC-1b (LOI = 0.50)	—	_	—	_	0.098	7.7	_	—
PVC-2b (LOI = 0.50)	_	_	—	_	0.076	8.3	—	-
PVCb (LOI = 0.20)	_	_	—	_	9.099	11.3	—	—
PVCb (LOI = 0.25)	_	_	_	_	0.078	9.8	—	_
PVCb (LOI = 0.30)	_	-	_	_	0.098	10.3	_	_
PVC (LOI = 0.35)	_	_	—	_	0.088	10.8	—	-
PVC panel	_	_	—	_	—	7.3	—	—
CPVC (CH _{1.3} Cl _{0.70})	12.8	0.48	0.052	_	0.043	4.4	—	—
PVDF (CHF)	13.3	0.53	0.055	_	0.037	3.8	_	—
ECTFE (CHF _{0.75} Cl _{0.25})	12.0	0.41	0.095	_	0.038	4.6	—	-
ETFE (Tefzel, CHF)	12.6	0.78	0.035	_	0.028	7.3	—	-
PFA (Teflon, $CF_{1.6}O_{0.01}$)	5.0	0.42	0.099	_	0.002	2.2	—	—
FEP (Teflon, $CF_{1.8}$)	4.8	0.25	0.116	_	0.003	1.3	_	—
TFE (Teflon, $CF_{1.8}$)	6.2	0.38	0.092	_	0.003	2.0	—	_
Building Products ^c								
Particleboard (PB)	_	1.2	0.004	_	—	14.0	—	—
Fiberboard (FB)	_	1.4	0.015	_	—	14.0	_	—
Medium-density FB	_	1.2	0.002	_	_	14.0	—	_
Wood panel	_	1.2	0.002	_	-	15.0	—	-
Melamine-faced PB	_	0.8	0.025	_	-	10.7	—	-
Gypsumboard (GB)	_	0.3	0.027	_	_	4.3	_	_
Paper on GB	_	0.4	0.028	_	—	5.6	_	—
Plastic on GB	_	0.4	0.028	_	_	14.3	—	_
Textile on GB	—	0.4	0.025	-	—	13.0	_	—
Textile on rock wool	_	1.8	0.091	_	—	25.0	—	—
Paper on PB	—	1.2	0.003	—	—	12.5	_	—
Rigid PU	—	1.1	0.200	—	—	13.0	_	—
EPS	—	1.9	0.054	_	—	28.0	—	_
Composite and Fiberglass-Reinforced Mat	terials (FG	R) (abbr	eviations/r	names in 1	the nomen	clature)		
PEEK/FGR ^b				_	0.042	20.5		
IPST/FGR ^b	_	_		_	0.032	27.0		
PES/FGR ^b	_	_	_	_	0.049	27.5		_
PEST1/FGR ^b		_		_	_	16.0		
PEST2/FGR ^b		_		_	_	12.9		
PEST1/FGR	_	_	—	_	_	19.0	_	_
PEST2/FGR	_	_	—	_	_	13.9	_	_
PEST3/FGR	—	1.47	0.055	0.007	0.070	17.9	10.7	7.2
PEST4/FGR	_	1.24	0.039	0.004	0.054	16.0	9.9	6.1
PEST5/FGR	_	0.71	0.102	0.019	0.068	9.3	6.5	2.8
Epoxy/FG ^b	_	_	_		0.056	27.5	_	_
PVEST/FGR	_				0.079	26.0		

Material	ΔH_{T}	Усо2	y _{co}	<i>y</i> _{ch}	$y_{\rm S}$	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$
Material	(kJ/g)		(g	/g)			(kJ/g)	
Kevlar/phenolic	—	1.27	0.025	0.002	0.041	14.8	11.1	3.7
Phenolic-1/FGR	_	0.98	0.066	0.003	0.023	11.9	8.9	3.0
Phenolic-2/FGR ^b	_	-	_	-	0.016	22.0	—	-
Aircraft Panel Materials								
Epoxy/FGR/paint	_	0.828	0.114	0.016	0.166	11.3	6.2	5.1
Epoxy/Kevlar/paint	_	0.873	0.091	0.016	0.126	11.4	6.3	5.1
Phenolic/FGR/paint	_	1.49	0.027	0.002	0.059	22.9	11.5	11.4
Phenolic/Kevlar/paint	_	1.23	0.088	0.011	0.094	18.6	8.9	9.7
Phenolic/graphite/paint	_	1.67	0.026	0.003	0.062	24.6	14.0	10.6
Polycarbonate	_	-	_	_	—	20.5	—	-
Electric Cables (abbreviations/names in th	e nomencl	ature)						
Polyethylene/Polyvinylchloride								
1	—	2.08	0.100	0.021	0.076	31.3	11.6	19.7
2	_	1.75	0.050	0.013	0.115	25.1	11.1	14.0
3	_	1.67	0.048	0.012	_	24.0	13.0	11.0
4	_	1.39	0.166	0.038	—	22.0	14.0	8.1
5	_	1.29	0.147	0.042	0.136	20.9	10.7	10.2
EPR/Hypalon			-					
1	_	1.95	0.072	0.014	—	29.6	15.8	13.9
2	_	1.74	0.076	0.022	—	26.8	17.0	9.8
3	_	1.21	0.072	0.014	_	19.0	12.3	6.7
4	_	0.99	0.090	0.085	0.082	17.4	6.6	10.8
5	_	0.95	0.122	0.024	_	17.3	7.5	9.8
6	_	0.89	0.121	0.022	0.164	13.9	9.2	4.7
Silicone		•						
1	_	1.65	0.011	0.001	_	25.0	17.5	7.3
2	_	1.47	0.029	0.001	—	24.0	20.0	4.0
XLPE/XLPE								
1	_	1.78	0.114	0.029	0.120	28.3	12.3	16.0
2	_	0.83	0.110	0.024	0.120	12.5	7.5	5.0
XLPE/Neoprene								
1	_	0.68	0.122	0.031	_	12.6	5.9	6.7
2	_	0.63	0.082	0.014	0.175	10.3	4.9	5.5
Silicone/PVC								
1	16.4	0.76	0.110	0.015	0.111	10.0	—	-
2	16.4	1.19	0.065	0.005	0.119	15.6	_	
PVC/Nylon/PVC-Nylon		·						
1	_	0.63	0.084	0.024	_	10.2	5.0	5.2
2	_	0.49	0.082	0.032	0.115	9.2	4.8	4.4
PTFE								
1		0.180	0.091	0.012	0.011	3.2	2.7	0.4

Material	ΔH_{T}	Усо2	y _{co}	y _{ch}	y _s	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$			
Matchai	(kJ/g)		(g/	/g)			(kJ/g)				
2	6.2	0.383	0.103	_	0.005	5.7	_	—			
Materials with Fiberweb, Netlike, and Mu	ltiplex Stru	ucture (a	bbreviatio	ns/names	in the nor	menclatu	ire)				
Olefin	_	1.49	0.006	—	—	16.5	13.3	3.2			
PP-1	_	1.25	0.0029	—	—	14.0	10.8	3.2			
PP-2	_	1.56	0.0048	_	—	17.2	10.5	6.7			
Polyester-1	—	2.21	0.015	—	—	24.6	8.9	15.7			
Polyester-2	_	1.51	0.0079	_	—	16.8	9.1	7.7			
Polyester-3	—	2.55	0.020	_	—	28.5	22.6	5.9			
Polyester-4	_	1.92	0.014	—	_	21.4	12.4	9.0			
Rayon-1	_	1.80	0.043	—	—	20.3	14.1	6.2			
Rayon-2	—	1.91	0.043	0.002	—	21.5	13.3	8.2			
Rayon-3	_	1.18	0.047	—	_	13.5	8.3	5.2			
Polyester-rayon	_	1.52	0.005	—	—	16.8	9.1	7.7			
Polyester-polyamide	_	1.82	0.008	—	—	20.2	10.4	9.8			
Two to Eight 100-mm × 100-mm × 100-mm	n Corruga	ted Paper	r Boxes wi	th and wi	thout the	Polymer	s with Th	ree-			
Dimensional Arrangement (abbreviations/names in the nomenclature) ^d											
Empty	_	1.53	0.023	0.001	_	14.2	10.7	3.5			
With PVC (62% thick)	_	1.01	0.073	0.007	0.119	10.7	9.5	1.2			
With PC (59% thick)	_	1.73	0.047	0.002	0.061	18.4	13.5	4.9			
With PS (58% thick)	_	1.40	0.138	0.026	0.285	16.2	12.5	3.7			
With PS (60% thin)	_	1.88	0.068	0.020	0.140	19.4	10.1	9.3			
With PS (40% thin)	_	1.74	0.042	0.005	0.167	18.0	11.7	6.7			
With ABS (59% thick)	_	1.53	0.089	0.006	0.143	16.1	12.7	3.4			
With PET (41% thin)	_	1.87	0.050	0.006	0.053	19.9	11.8	8.1			
With PU (40% foam)	_	1.56	0.024		_	14.4	8.6	5.8			
High-Pressure Liquid Spray Combustion ^e											
Hydraulic Fluids											
Organic polyol esters											
1	36.6	_	_		_	35.5		-			
2	35.7	-	—	_	—	35.1	—	-			
3	40.3	_	—	_	—	37.2	—	—			
4	37.0	-	—	_	—	35.7	_	—			
Phosphate esters											
1	31.8	_	—	_	_	29.3	—	-			
2	32.0	-	_	-	_	29.6	—	-			
Water-in-oil emulsions											
1	27.6	_	_	_	_	2.5	_	_			
Polyglycol-in-water											
1	11.0	-	_	_	_	10.4	_	_			
2	11.9					11.1					

Material	ΔH_{T}	Усо2	y _{co}	y _{ch}	y _s	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$	
	(kJ/g)		(g/	/g)			(kJ/g)		
3	14.7	_	—	—	—	12.2	_	—	
4	12.1	-	_	_	_	10.6	—	-	
Liquid fuels									
Mineral oil	46.0	_	_	_	_	44.3	_	_	
Methanol	20.0	_	_	_	_	19.8	—	_	
Ethanol	27.7	_	_	_	_	26.2	_	_	
Heptane	44.4	_	_	_	_	40.3	_	_	

Note: Dashes = either not measured or less than 0.001.

^a Data measured in the ASTM E2058 fire propagation apparatus. Data measured in the cone calorimeter are identified by superscripts ^b and ^c. Some of the data are corrected to reflect well-ventilated fire conditions. All the data are reported for turbulent fires, that is, materials exposed to higher external heat flux values.

^b Calculated from the data measured in the cone calorimeter.

^c Calculated from the data measured in the cone calorimeter.

^d 100-mm × 100-mm × 100-mm corrugated paper boxes with and without the 99-mm × 99-mm × 99-mm polymer boxes or pieces on corrugated paper compartments. The boxes are arranged in one and two layers, about 12 mm apart, with one to four boxes in each layer, separated by about 12 mm. All the boxes are placed on a very light metal frame made of rods with screen base. Measurements made in the ASTM E2058 fire propagation apparatus; numbers in parentheses are the weight percents.

^e Data measured in high-pressure liquid spray combustion in the fire products collector (5,000-kW scale apparatus).

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.

11.9 Combustion Properties of Fuels

(Shaded cells show measurements by Tewarson; refer to SFPE Handbook of Fire Protection Engineering, fifth edition, for reference information.)

	F 1	Lan	M	G	Heat of Combustion (kJ/g)				Yield (g/g)		
Fuel	Formula	(m)	(g/mol)	S	ΔH_T	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$	СО	Smoke	
Normal Alkanes											
Ethane	C ₂ H ₆	0.243	30	16.0	47.1	47.0	37.4	9.6	< 0.001	0.002	
n-Propane	C ₃ H ₈	0.162	44	15.6	46.0	44.1	31.6	12.5	0.005	0.019	
<i>n</i> -Butane	C ₄ H ₁₀	0.160	58	15.4	45.4	43.5	31.0	12.4	0.005	0.020	
<i>n</i> -Pentane	C ₅ H ₁₂	0.155	72	15.3	45.0	42.3	29.3	13.1	0.006	0.022	
<i>n</i> -Hexane	C ₆ H ₁₄	0.125	86	15.2	44.8	41.7	28.2	13.4	0.009	0.031	
n-Heptane	C ₇ H ₁₆	0.110	100	15.1	44.6	41.2	27.6	13.6	0.012	0.042	
<i>n</i> -Octane	C ₈ H ₁₈	0.118	114	15.1	44.5	41.3	27.5	13.8	0.010	0.034	
<i>n</i> -Nonane	C ₉ H ₂₀	0.110	128	15.0	44.4	40.9	26.9	14.1	0.012	0.037	
<i>n</i> -Decane	C ₁₀ H ₂₂	0.110	142	15.0	44.3	40.9	26.8	14.0	0.012	0.037	
<i>n</i> -Undecane	C ₁₁ H ₂₄	0.110	156	15.0	44.3	40.9	26.8	14.0	0.012	0.037	
n-Dodecane	C ₁₂ H ₂₆	0.108	170	14.9	44.2	40.7	26.6	14.1	0.012	0.038	
n-Tridecane	C ₁₃ H ₂₈	0.106	184	14.9	44.2	40.6	26.5	14.1	0.012	0.039	
<i>n</i> -Tetradecane	C ₁₄ H ₃₀	0.109	198	14.9	44.1	40.6	26.6	14.0	0.012	0.037	
Hexadecane	C ₁₆ H ₃₄	0.118	226	14.9	44.1	41.0	27.3	13.7	0.010	0.034	
Branched Alkanes											
Methylbutane	C ₅ H ₁₂	0.113	72	15.3	45.0	41.6	27.5	14.1	0.011	0.035	
Dimethylbutane	C ₆ H ₁₄	0.089	86	15.2	44.8	40.4	25.5	15.0	0.015	0.046	
Methylpentane	C ₆ H ₁₄	0.094	86	15.2	44.8	40.7	25.9	14.8	0.014	0.043	
Dimethylpentane	C ₇ H ₁₆	0.096	100	15.1	44.6	40.6	25.9	14.6	0.014	0.043	
Methylhexane	C ₇ H ₁₆	0.109	100	15.1	44.6	41.1	26.9	14.2	0.012	0.037	
Isooctane (trimethylpentane)	C ₈ H ₁₈	0.080	114	15.1	44.5	40.5	26.7	13.8	0.016	0.051	
Methylethylpentane	C ₈ H ₁₈	0.082	114	15.1	44.5	39.9	24.7	15.1	0.016	0.049	
Ethylhexane	C ₈ H ₁₈	0.093	114	15.1	44.5	40.4	25.6	14.7	0.014	0.044	
Dimethylhexane	C ₈ H ₁₈	0.089	114	15.1	44.5	40.2	25.3	14.9	0.015	0.046	
Methylheptane	C ₈ H ₁₈	0.101	114	15.1	44.5	40.7	26.3	14.4	0.013	0.040	
Cyclic Alkanes											
Cyclo-pentane	C ₅ H ₁₀	0.067	70	14.7	44.3	38.9	23.2	15.6	0.020	0.059	
Methylcyclopentane	C ₆ H ₁₂	0.052	84	14.7	43.8	37.5	21.5	16.0	0.025	0.070	
Cyclohexane	C ₆ H ₁₂	0.085	84	14.7	43.8	39.9	24.5	15.3	0.016	0.049	
Methylcyclohexane	C ₇ H ₁₄	0.075	98	14.7	43.4	38.5	23.5	15.0	0.018	0.054	
Ethylcyclohexane	C ₈ H ₁₆	0.082	112	14.7	43.2	38.7	24.0	14.7	0.017	0.050	
Dimethylcyclohexane	C ₈ H ₁₆	0.057	112	14.7	43.2	37.3	21.7	15.6	0.023	0.066	
Cyclooctane	C ₈ H ₁₆	0.085	112	14.7	43.2	38.8	24.2	14.6	0.016	0.049	
Decalin	C ₁₀ H ₁₈	_	138	14.4	42.8	34.2	17.9	16.3	0.015	0.097	
Bicyclohexyl	C ₁₂ H ₂₂	_	166	14.5	42.6	36.2	20.9	15.3	0.010	0.071	

		L	M	G	Heat	t of Com	Yield (g/g)			
Fuel	Formula	(m)	(g/mol)	8	ΔH_T	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$	СО	Smoke
Alkenes					L	I	<u>.</u>	1		,
Ethylene	C ₂ H ₄	0.106	28	14.7	48.0	44.2	29.8	14.4	0.013	0.045
Propylene	C ₃ H ₆	0.029	42	14.7	46.4	37.6	19.0	18.6	0.036	0.103
Butylene	C ₄ H ₈	0.019	56	14.7	45.6	35.3	17.3	18.0	0.042	0.115
Pentene	C ₅ H ₁₀	0.053	70	14.7	45.2	38.7	22.3	16.5	0.024	0.070
Hexene	C ₆ H ₁₂	0.063	84	14.7	44.9	39.2	23.2	16.0	0.021	0.062
Heptene	C ₇ H ₁₄	0.073	98	14.7	44.6	39.5	24.0	15.5	0.019	0.055
Octene	C ₈ H ₁₆	0.080	112	14.7	44.5	39.8	24.5	15.2	0.017	0.051
Nonene	C ₉ H ₁₈	0.084	126	14.7	44.3	39.8	24.8	15.0	0.016	0.049
Decene	C ₁₀ H ₂₀	0.079	140	14.7	44.2	39.4	24.3	15.2	0.017	0.052
Dodecene	C ₁₂ H ₂₄	0.080	168	14.7	44.1	39.4	24.3	15.1	0.017	0.051
Tridecene	C ₁₃ H ₂₆	0.084	182	14.7	44.0	39.5	24.6	14.9	0.016	0.049
Tetradecene	C ₁₄ H ₂₈	0.079	196	14.7	44.0	39.3	24.2	15.1	0.017	0.052
Hexadecene	C ₁₆ H ₃₂	0.080	224	14.7	43.9	39.2	24.2	15.0	0.017	0.051
Octadecene	C ₁₈ H ₃₆	0.075	252	14.7	43.8	38.9	23.7	15.2	0.018	0.054
Polyethylene	$(C_2H_4)n$	0.045	601	14.7	43.6	37.9	21.8	16.1	0.024	0.060
Polypropylene	$(C_3H_6)n$	0.050	720	14.7	43.4	37.0	21.1	15.9	0.024	0.058
Cyclic Alkenes				<u> </u>	L	I	I	1	I	
Cyclohexene	C ₆ H ₁₀	0.044	82	14.2	43.0	36.2	20.2	16.0	0.028	0.080
Methylcyclohexene	C ₇ H ₁₂	0.043	96	14.3	43.1	36.2	20.1	16.1	0.028	0.080
Pinene	$C_{10}H_{16}$	0.024	136	14.1	36.0	28.5	14.5	14.0	0.039	0.108
Alkynes and Butadiene	10 10					1	1		<u> </u>	
Acetylene	C ₂ H ₂	0.019	26	13.2	47.8	37.0	18.2	18.8	0.045	0.124
Heptyne	C ₇ H ₁₂	0.035	96	14.3	44.8	36.8	19.8	17.0	0.032	0.090
Octyne	C ₈ H ₁₄	0.030	110	14.4	44.7	36.2	19.0	17.2	0.035	0.096
Decyne	C ₁₀ H ₁₈	0.043	138	14.4	44.5	37.4	20.7	16.6	0.028	0.080
Dodecyne	C ₁₂ H ₂₂	0.030	166	14.5	44.3	35.9	18.8	17.0	0.034	0.096
1,3-Butadiene	C ₄ H ₆	0.015	54	14.0	44.6	33.7	16.0	17.7	0.048	0.130
Arenes	,				<u> </u>					,
Benzene	C ₆ H ₆	0.007	78	13.2	40.1	28.1	11.9	16.2	0.064	0.171
Toluene	C ₇ H ₈	0.005	92	13.4	39.7	27.0	11.1	15.9	0.064	0.173
Styrene	C ₈ H ₈	0.006	104	13.2	39.4	27.2	11.2	16.0	0.066	0.178
Ethylbenzene	C ₈ H ₁₀	0.005	106	13.6	39.4	26.7	10.7	16.0	0.069	0.184
Xylene	C_8H_{10}	0.006	106	13.6	39.4	27.2	11.2	16.0	0.065	0.175
Indene	C ₉ H ₈	0.008	116	13.0	39.2	27.8	12.0	15.8	0.062	0.166
Propylbenzene	$C_{9}H_{12}$	0.009	120	13.7	39.2	28.1	12.4	15.8	0.057	0.155
Trimethylbenzene	C ₉ H ₁₂	0.006	120	13.7	39.2	27.0	11.2	15.9	0.065	0.174
Cumene	C ₉ H ₁₂	0.006	120	13.7	39.2	27.0	11.2	15.9	0.065	0.174
Naphthalene	C ₁₀ H ₈	0.005	128	12.9	39.0	26.4	10.6	15.8	0.071	0.190
Tetralin	C ₁₀ H ₁₂	0.006	132	13.5	39.0	26.9	11.1	15.8	0.065	0.176

		Lan	M	M		t of Com	Yield (g/g)			
Fuel	Formula	(m)	(g/mol)	8	ΔH_T	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$	СО	Smoke
Butylbenzene	C ₁₀ H ₁₄	0.007	134	13.8	39.0	27.3	11.5	15.8	0.062	0.166
Diethylbenzene	C ₁₀ H ₁₄	0.007	134	13.8	39.0	27.3	11.5	15.8	0.062	0.166
<i>p</i> -Cymene	C ₁₀ H ₁₄	0.007	134	13.8	39.0	27.3	11.5	15.8	0.062	0.166
Methylnaphthalene	$C_{11}H_{10}$	0.006	142	13.0	38.9	26.8	11.1	15.8	0.067	0.180
Pentylbenzene	$C_{11}H_{16}$	0.009	148	13.9	38.8	27.9	12.2	15.6	0.057	0.154
Dimethylnaphthalene	$C_{12}H_{12}$	0.006	156	13.2	38.8	26.8	11.0	15.7	0.066	0.178
Cyclohexylbenzene	C ₁₂ H ₁₆	0.007	160	13.7	38.7	27.1	11.5	15.6	0.062	0.167
Diisopropylbenzene	C ₁₂ H ₁₈	0.007	162	14.0	38.7	27.1	11.5	15.6	0.061	0.165
Triethylbenzene	C ₁₂ H ₁₈	0.006	162	14.0	38.7	26.7	11.0	15.7	0.064	0.172
Triamylbenzene	C ₂₁ H ₃₆	0.007	288	14.3	38.1	26.7	11.3	15.4	0.060	0.162
Polystyrene	(C ₈ H ₈)n	0.015	200	13.2	39.2	27.0	11.0	16.1	0.060	0.166
Aliphatic Esters										
Ethyl formate	C ₃ H ₆ O ₂	0.137	74	6.5	20.2	19.0	13.1	5.9	0.005	0.016
<i>n</i> -Propyl formate	$C_4H_8O_2$	0.114	88	7.8	23.9	22.1	14.6	7.5	0.007	0.023
<i>n</i> -Butyl formate	$C_5H_{10}O_2$	0.099	102	8.8	26.6	24.3	15.6	8.7	0.009	0.029
Methyl acetate	C ₃ H ₆ O ₂	0.137	74	6.5	20.2	19.0	13.1	5.9	0.005	0.016
Ethyl acetate	C ₄ H ₈ O ₂	0.114	88	7.8	23.9	22.1	14.6	7.5	0.007	0.023
<i>n</i> -Propyl acetate	C ₅ H ₁₀ O ₂	0.099	102	8.8	26.6	24.3	15.6	8.7	0.009	0.029
<i>n</i> -Butyl acetate	C ₆ H ₁₂ O ₂	0.093	116	9.5	28.7	26.0	16.5	9.5	0.011	0.032
Isobutyl acetate	$C_6H_{12}O_2$	0.093	116	9.5	28.7	26.0	16.5	9.5	0.011	0.032
Amyl acetate	C ₇ H ₁₄ O ₂	0.086	130	10.0	30.3	27.3	17.1	10.2	0.012	0.036
Cyclohexyl acetate	C ₈ H ₁₄ O ₂	0.083	142	10.2	31.5	28.2	17.6	10.7	0.013	0.039
Octyl acetate	C ₁₀ H ₂₀ O	0.077	172	11.2	33.6	29.9	18.3	11.6	0.015	0.043
Ethyl acetoacetate	C ₆ H ₁₀ O ₃	0.086	130	7.4	30.3	27.3	17.1	10.2	0.010	0.031
Methyl propionate	C ₄ H ₈ O ₂	0.114	88	7.8	23.9	22.1	14.6	7.5	0.007	0.023
Ethyl propionate	C ₅ H ₁₀ O ₂	0.099	102	8.8	26.6	24.3	15.6	8.7	0.009	0.029
<i>n</i> -Butyl propionate	$C_7H_{14}O_2$	0.086	130	10.0	30.3	27.3	17.1	10.2	0.012	0.036
Isobutyl propionate	$C_7H_{14}O_2$	0.086	130	10.0	30.3	27.3	17.1	10.2	0.012	0.042
Amyl propionate	C ₈ H ₁₆ O ₂	0.082	144	10.5	31.6	28.3	17.5	10.8	0.013	0.024
Methyl butyrate	C ₅ H ₁₀ O ₂	0.099	102	8.8	26.6	24.3	15.6	8.7	0.009	0.035
Ethyl butyrate	$C_6H_{12}O_2$	0.093	116	9.5	28.7	26.0	16.5	9.5	0.011	0.038
Propyl butyrate	$C_7H_{14}O_2$	0.086	130	10.0	30.3	27.3	17.1	10.2	0.012	0.042
<i>n</i> -Butyl butyrate	$C_8H_{16}O_2$	0.082	144	10.5	31.6	28.3	17.5	10.8	0.013	0.039
Isobutyl butyrate	C ₈ H ₁₆ O ₂	0.082	144	10.5	31.6	28.3	17.5	10.8	0.013	0.069
Ethyl laurate	$C_{14}H_{28}O_2$	0.196	228	12.0	37.2	36.3	27.3	9.1	0.002	0.004
Ethyl oxalate	$C_6H_{10}O_4$	0.224	146	6.1	28.7	33.0	25.7	7.3	< 0.001	0.003
Ethyl malonate	C ₅ H ₈ O ₄	0.210	132	7.7	32.2	31.7	24.2	7.5	< 0.001	0.005
Ethyl lactate	C ₅ H ₁₀ O ₃	0.214	118	7.0	30.8	30.4	23.3	7.0	< 0.001	0.005
Butyl lactate	C ₇ H ₁₄ O ₃	0.206	146	8.5	33.3	32.7	24.9	7.8	0.001	0.007
Amyl lactate	C ₈ H ₁₆ O ₃	0.203	160	9.0	34.3	33.6	25.5	8.1	0.001	0.007

		L _{cn}	M Heat of Combustion (kJ/g)			(kJ/g)	Yield	(g/g)		
Fuel	Formula	(m)	(g/mol)	8	ΔH_T	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$	СО	Smoke
Ethyl carbonate	C ₅ H ₁₀ O ₃	0.214	118	7.0	30.8	30.4	23.3	7.0	< 0.001	0.005
Aliphatic Alcohols										
Methyl alcohol	CH ₄ O	0.305	32	6.4	20.0	19.4	16.6	2.8	0.001	< 0.001
Ethyl alcohol	C ₂ H ₆ O	0.225	46	9.0	27.7	26.9	20.5	6.4	0.001	0.008
<i>n</i> -Propyl alcohol	C ₃ H ₈ O	0.155	60	10.3	31.8	30.3	21.5	8.8	0.004	0.016
Isopropyl alcohol	C ₃ H ₈ O	0.148	60	10.3	31.8	29.9	20.7	9.2	0.003	0.017
<i>n</i> -Butyl alcohol	C ₄ H ₁₀ O	0.141	74	11.1	34.4	32.5	22.5	10.0	0.006	0.020
Isobutyl alcohol	C ₄ H ₁₀ O	0.141	74	11.1	34.4	32.5	22.5	10.0	0.006	0.020
Sec butyl alcohol	C ₄ H ₁₀ O	0.141	74	11.1	34.4	32.5	22.5	10.0	0.006	0.020
Ter butyl alcohol	C ₄ H ₁₀ O	0.141	74	11.1	34.4	32.5	22.5	10.0	0.006	0.020
<i>n</i> -Amyl alcohol	C ₅ H ₁₂ O	0.131	88	11.7	36.2	34.0	23.2	10.8	0.007	0.024
Isobutyl carbinol	C ₅ H ₁₂ O	0.131	88	11.7	36.2	34.0	23.2	10.8	0.007	0.024
Sec butyl carbinol	C ₅ H ₁₂ O	0.131	88	11.7	36.2	34.0	23.2	10.8	0.007	0.024
Methylpropyl carbinol	C ₅ H ₁₂ O	0.131	88	11.7	36.2	34.0	23.2	10.8	0.007	0.024
Dimethylethyl carbinol	C ₅ H ₁₂ O	0.131	88	11.7	36.2	34.0	23.2	10.8	0.007	0.024
<i>n</i> -Hexyl alcohol	C ₆ H ₁₄ O	0.125	102	12.1	37.4	34.9	23.6	11.4	0.008	0.026
Dimethylbutyl alcohol	C ₆ H ₁₄ O	0.125	102	12.1	37.4	34.9	23.6	11.4	0.008	0.026
Ethylbutyl alcohol	C ₆ H ₁₄ O	0.125	102	12.1	37.4	34.9	23.6	11.4	0.008	0.026
Allyl alcohol	C ₃ H ₆ O	0.159	58	9.5	31.4	30.0	21.4	8.6	0.004	0.015
Cyclohexanol	C ₆ H ₁₂ O	0.124	100	11.7	37.3	34.8	23.5	11.4	0.008	0.027
Aliphatic Ketones						1				
Acetone	C ₃ H ₆ O	0.205	58	9.5	29.7	28.5	21.7	6.8	0.001	0.009
Methyl ethyl ketone	C ₄ H ₈ O	0.169	72	10.5	32.7	31.5	22.8	8.7	0.003	0.014
Cyclohexanone	C ₆ H ₁₀ O	0.164	98	11.2	35.9	34.5	24.7	9.7	0.004	0.017
Di-acetone alcohol	$C_6H_{12}O_2$	0.161	116	9.5	37.3	35.7	25.5	10.2	0.004	0.015
Other Aliphatic Fuels										1
Monoethyl ether	C ₄ H ₁₀ O ₂	0.232	90	8.4	26.7	26.5	20.8	5.7	< 0.001	0.003
Monoethylether acetate	C ₆ H ₁₂ O ₃	0.204	132	7.8	32.2	31.6	24.0	7.6	0.001	0.006
Monoethylether diacetate	C ₆ H ₁₀ O ₄	0.208	146	6.1	33.3	32.7	25.0	7.8	< 0.001	0.005
Glycerol triacetate	C ₉ H ₁₄ O ₆	0.195	218	6.0	36.9	36.0	27.0	9.0	0.001	0.007
Other Aromatic Fuels	1		1			1				
Benzaldehyde	C ₇ H ₆ O	0.010	106	10.4	32.4	23.5	10.5	13.0	0.049	0.132
Benzyl alcohol	C ₇ H ₈ O	0.010	108	10.8	32.6	23.7	10.6	13.1	0.048	0.130
Cresylic acid	C ₈ H ₈ O	0.015	136	9.1	34.0	25.7	12.2	13.5	0.038	0.103
Ethyl benzoate	C ₉ H ₁₀ O ₂	0.029	150	9.6	34.5	27.8	14.6	13.3	0.029	0.081
Aliphatic Fuels with Carbo	n, Hydrogen, an	d Nitroge	en			1			1	1
Diethylamine	C ₄ H ₁₁ N	0.089	73	14.6	38.0	34.3	21.6	12.7	0.012	0.036
n-Butylamine	C ₄ H ₁₁ N	0.089	73	14.6	38.0	34.3	21.6	12.7	0.012	0.036
Sec-Butylamine	C ₄ H ₁₁ N	0.089	73	14.6	38.0	34.3	21.6	12.7	0.012	0.036
Triethylamine	C ₆ H ₁₅ N	0.085	101	14.6	39.6	35.6	22.2	13.4	0.013	0.041

		L _{cn}	L _{sp} M	G	Heat	of Com	bustion	(kJ/g)	Yield (g/g)	
Fuel	Formula	(m)	(g/mol)	8	ΔH_T	ΔH_{ch}	$\Delta H_{\rm con}$	$\Delta H_{\rm rad}$	СО	Smoke
Di-n-butylamine	C ₈ H ₁₉ N	0.083	129	14.6	40.6	36.4	22.6	13.8	0.014	0.043
Tri-n-butylamine	C ₁₂ H ₂₇ N	0.082	185	14.7	41.6	37.3	23.1	14.2	0.015	0.046
Aromatic Fuels with Carbo	n, Hydrogen, ar	nd Nitrog	en							
Pyridine	C ₅ H ₅ N	0.022	79	12.6	32.2	25.3	12.7	12.6	0.035	0.096
Aniline	C ₆ H ₇ N	0.018	93	12.9	33.8	26.0	12.7	13.3	0.039	0.106
Picoline	C ₆ H ₇ N	0.018	93	12.9	33.8	26.0	12.7	13.3	0.039	0.106
Toluidine	C ₇ H ₉ N	0.014	107	13.2	34.9	26.2	12.3	13.9	0.043	0.118
Dimethylaniline	C ₈ H ₁₁ N	0.013	121	13.3	35.7	26.6	12.4	14.2	0.045	0.122
Quinoline	C ₉ H ₇ N	0.012	129	12.5	36.1	26.7	12.2	14.4	0.049	0.132
Quinaldine	C ₁₀ H ₉ N	0.011	143	12.7	36.7	26.9	12.2	14.7	0.050	0.136
Butylaniline	C ₁₀ H ₁₅ N	0.009	149	13.6	37.0	26.6	11.7	14.9	0.051	0.139
Aliphatic Fuels with Carbo	n, Hydrogen, an	d Sulphu	r							
Hexyl mercaptan	C ₆ H ₁₄ S	0.062	118	12.2	33.0	28.7	16.9	11.8	0.015	0.045
Heptyl mercaptan	C ₇ H ₁₆ S	0.063	132	12.5	33.7	29.4	17.4	12.0	0.016	0.046
Decyl mercaptan	$C_{10}H_{22}S$	0.062	174	13.0	34.9	30.4	17.9	12.5	0.017	0.050
Dodecyl mercaptan	C ₁₂ H ₂₆ S	0.063	202	13.3	35.5	31.0	18.3	12.7	0.018	0.052
Hexyl sulfide	C ₁₂ H ₂₆ S	0.063	202	13.3	35.5	31.0	18.3	12.7	0.018	0.052
Heptyl sulfide	$C_{14}H_{30}S$	0.061	230	13.4	35.9	31.2	18.4	12.9	0.019	0.054
Octyl sulfide	C ₁₆ H ₃₄ S	0.061	258	13.6	36.3	31.6	18.6	13.0	0.019	0.055
Decyl sulfide	C ₂₀ H ₄₂ S	0.062	314	13.8	36.8	32.0	18.9	13.1	0.019	0.056
Aromatic Fuels with Carbo	n, Hydrogen, ar	nd Sulphu	r					-	-	-
Thiophene	C ₄ H ₄ S	0.016	84	9.8	31.9	24.3	11.6	12.6	0.030	0.082
Methylthiophene	C ₅ H ₆ S	0.014	98	10.5	33.2	24.9	11.7	13.2	0.034	0.092
Thiophenol	C ₆ H ₆ S	0.013	110	10.6	34.1	25.4	11.8	13.6	0.037	0.101
Thiocresol	C ₇ H ₈ S	0.011	124	11.1	34.9	25.6	11.6	14.0	0.041	0.110
Cresolmethyl sulfide	C ₈ H ₁₁ S	0.011	155	11.6	36.2	26.5	12.0	14.5	0.041	0.112

11.10 Flammability Limits of Premixed and Diffusion Flames

Combustible	LFL y	UFL y	<i>T</i> _L (°C)	AIT (°C)								
Acetal	1.6	10	37	230								
Acetaldehyde	4.0	60	_	175								
Acetic acid	5.4 ^a	—	40	465								
Acetic anhydride	2.7 ^b	10 °	47	390								
Acetanilide	1.0 ^d	_	_	545								
Acetone	2.6	13	_	465								
Acetophenone	1.1 ^d	—	_	570								
Acetylacetone	1.7 ^d	—	—	340								
Acetyl chloride	5.0 ^d	_	—	390								

Limits of Flammability (vol %)

Combustible	LFL y	UFL y	$T_{\rm L}$ (°C)	AIT (°C)
Acetylene	2.5	100	-	305
Acrolein	2.8	31	_	235
Acrylonitrile	3.0	_	-6	_
Acetone-cyanohydrin	2.2	12	_	_
Adipic acid	1.6 ^d	-	_	420
Aldol	2.0 ^d	-	_	250
Allyl alcohol	2.5	18	22	_
Allyl amine	2.2	22	_	375
Allyl bromide	2.7 ^d	-	_	295
Allyl chloride	2.9	-	-32	485
o-Aminodiphenyl	0.66	4.1	_	450
Ammonia	15.0	28	_	-
<i>n</i> -Amyl acetate	1.0 a	7.1 ª	25	360
<i>n</i> -Amyl alcohol	1.4 ^a	10 ^a	38	300
<i>tert</i> -Amyl alcohol	1.4 ^d	_	_	435
<i>n</i> -Amyl chloride	1.6 °	8.6 ª	_	260
tert-Amyl chloride	1.5 f	-	-12	345
<i>n</i> -Amyl ether	0.7 ^d	-	_	170
Amyl nitrite	1.0 ^d	-	_	210
<i>n</i> -Amyl propionate	1.0 ^d	_	_	380
Amylene	1.4	8.7	-	275
Aniline	1.2 g	8.3 g	_	615
Anthracene	0.65 ^d	-	_	540
<i>n</i> -Amyl nitrate	1.1	_	_	195
Benzene	1.3 a	7.9 ^a	-	560
Benzyl benzoate	0.7 ^d	_	-	480
Benzyl chloride	1.2 ^d	_	—	585
Bicyclohexyl	0.65 a	5.1 ^h	74	245
Biphenyl	0.70 ⁱ	-	110	540
2-Biphenylamine	0.8 ^d	-	_	450
Bromobenzene	1.6 ^d	-	-	565
Butadiene (1,3)	2.0	12	-	420
<i>n</i> -Butane	1.8	8.4	-72	405
1,3-Butandiol	1.9 ^d	-	-	395
Butene-1	1.6	10	-	385
Butene-2	1.7	9.7	_	325
<i>n</i> -Butyl acetate	1.4 e	8.0 ^a	-	425
<i>n</i> -Butyl alcohol	1.7 ^a	12 a	_	-
sec-Butyl alcohol	1.7 ^a	9.8 ^a	21	405
tert-Butyl alcohol	1.9 ^a	9.0 ^a	11	480
<i>tert</i> -Butyl amine	1.7 ª	8.9 a	_	380
<i>n</i> -Butyl benzene	0.82 ª	5.8 ^a		410

Combustible	LFL y	UFL ^y	$T_{\rm L}$ (°C)	AIT (°C)
sec-Butyl benzene	0.77 ^a	5.8 ^a	_	420
tert-Butyl benzene	0.77 ^a	5.8 ^a	-	450
<i>n</i> -Butyl bromide	2.5 ª	_	_	265
Butyl cellosolve	1.1 ^h	11 ^j	_	245
<i>n</i> -Butyl chloride	1.8	10 a	_	_
<i>n</i> -Butyl formate	1.7	8.2	_	_
<i>n</i> -Butyl stearate	0.3 ^d	—	_	355
Butyric acid	2.1 d	_	_	450
α-Butryolactone	2.0 h	-	_	_
Carbon disulfide	1.3	50	_	90
Carbon monoxide	12.5	74	_	_
Chlorobenzene	1.4	_	21	640
<i>m</i> -Cresol	1.1 ^h	-	_	_
Crotonaldehyde	2.1	16 ^k	_	_
Cumene	0.88 a	6.5 ^a	_	425
Cyanogen	6.6	—	_	_
Cycloheptane	1.1	6.7	_	_
Cyclohexane	1.3	7.8	_	245
Cyclohexanol	1.2 ^d	—	_	300
Cyclohexene	1.2 ª	_	_	_
Cyclohexyl acetate	1.0 d	_	_	335
Cyclopropane	2.4	10.4	_	500
Cymene	0.85 a	6.5 ^a	_	435
Decaborane	0.2	_	_	-
Decalin	0.74 ª	4.9 ^a	57	250
<i>n</i> -Decane	0.75 1	5.6 ^m	46	210
Deuterium	4.9	75	_	_
Diborane	0.8	88	-	_
Diesel fuel (60 cetane)	_	—	—	225
Diethyl amine	1.8	10	—	-
Diethyl analine	0.8 ^d	_	80	630
1,4-Diethyl benzene	0.8 ^a	—	—	430
Diethyl cyclohexene	0.75	—	—	240
Diethyl ether	1.9	36	—	160
3,3-Diethyl pentane	0.7 ^a	_	_	290
Diethyl ketone	1.6	—	_	450
Diisobutyl carbinol	0.82 ª	6.1 ^j	_	_
Diisobutyl ketone	0.79 a	6.2 ª	_	-
2-4,Diisocyanate			120	_
Diisopropyl ether	1.4	7.9	_	_
Dimethyl amine	2.8		_	400
2,2-Dimethyl butane	1.2	7.0	_	_

Combustible	LFL y	UFL y	$T_{\rm L}$ (°C)	AIT (°C)
2,3-Dimethyl butane	1.2	7.0	_	_
Dimethyl decalin	0.69 ^a	5.3 ⁱ	_	235
Dimethyl dichlorosilane	3.4	_	_	_
Dimethyl ether	3.4	27	_	350
<i>n</i> , <i>n</i> -Dimethyl formamide	1.8 ^a	14 ^a	57	435
2,3-Dimethyl pentane	1.1	6.8	_	335
2,2-Dimethyl propane	1.4	7.5	_	450
Dimethyl sulfide	2.2	20	—	205
Dimethyl sulfoxide	_	-	84	-
Dioxane	2.0	22	—	265
Dipentene	0.75 ^h	6.1 ^h	45	237
Diphenylamine	0.7 ^d	_	_	635
Diphenyl ether	0.8 ^d	-	—	620
Diphenyl methane	0.7 ^d	-	—	485
Divinyl ether	1.7	27	—	_
<i>n</i> -Dodecane	0.60 ^d	-	74	205
Ethane	3.0	12.4	-130	515
Ethyl acetate	2.2	11	_	—
Ethyl alcohol	3.3	19 ^k	_	365
Ethyl amine	3.5	-	—	385
Ethyl benzene	1.0 a	6.7 ^a	_	430
Ethyl chloride	3.8	_	_	—
Ethyl cyclobutane	1.2	7.7	_	210
Ethyl cyclohexane	2.0 ⁿ	6.6 ⁿ	—	260
Ethyl cyclopentane	1.1	6.7	_	260
Ethyl formate	2.8	16	_	455
Ethyl lactate	1.5	-	_	400
Ethyl mercaptan	2.8	18		300
Ethyl nitrate	4.0	_		_
Ethyl nitrite	3.0	50		_
Ethyl propionate	1.8	11		440
Ethyl propyl ether	1.7	9		_
Ethylene	2.7	36		490
Ethyleneimine	3.6	46	_	320
Ethylene glycol	3.5 ^d	-	-	400
Ethylene oxide	3.6	100		_
Furfural alcohol	1.8 °	16 p	72	390

Combustible	LFL ^y	UFL y	<i>T</i> _L (°C)	AIT (°C)
Gasoline:	-			
100/130	1.3	7.1	-	440
115/145	1.2	7.1	_	470
Glycerine	_	_	_	370
<i>n</i> -Heptane	1.05	6.7	-4	215
<i>n</i> -Hexadecane	0.43 d	_	126	205
<i>n</i> -Hexane	1.2	7.4	-26	225
<i>n</i> -Hexyl alcohol	1.2 ª	-	_	_
<i>n</i> -Hexyl ether	0.6 d	_	_	185
Hydrazine	4.7	100	_	-
Hydrogen	4.0	75	_	400
Hydrogen cyanide	5.6	40	_	_
Hydrogen sulfide	4.0	44	_	_
Isoamyl acetate	1.1	7.0 ^a	25	360
Isoamyl alcohol	1.4	9.0 ^a	_	350
Isobutane	1.8	8.4	-81	460
Isobutyl alcohol	1.7 ^a	11 ^a	_	_
Isobutyl benzene	0.82 ^a	6.0 ^j	_	430
Isobutyl formate	2.0	8.9	_	_
Isobutylene	1.8	9.6	_	465
Isopentane	1.4	_	_	_
Isophorone	0.84	_	_	460
Isopropylacetate	1.7 ^d	_	_	_
Isopropyl alcohol	2.2	-	_	_
Isopropyl biphenyl	0.6 d	-	-	440
Jet fuel:				
JP-4	1.3	8	-	240
JP-6	_	-	-	230
Kerosene	-	-	-	210
Methane	5.0	15.0	-187	540
Methyl acetate	3.2	16	_	_
Methyl acetylene	1.7	-	-	_
Methyl alcohol	6.7	36 k	-	385
Methyl amine	4.2 ^d	-	_	430
Methyl bromide	10	15	_	-
3-Methyl butene-1	1.5	9.1	-	_
Methyl butyl ketone	51.2	8.0 a	_	_
Methyl cellosolve	2.5 q	20 g	-	380
Methyl cellosolve acetate	1.7 ^h	-	46	_
Methyl ethyl ether	2.2 d	_	-	_
Methyl chloride	7 d			
Methyl cyclohexane	1.1	6.7	_	250

Combustible	LFL y	UFL y	<i>T</i> _L (°C)	AIT (°C)
Methyl cyclopentadiene	1.3 a	7.6 ª	49	445
Methyl ethyl ketone	1.9	10	_	_
Methyl ethyl ketone peroxide	_	_	40	390
Methyl formate	5.0	23	_	465
Methyl cyclohexanol	1.0 ^d	_	_	295
Methyl isobutyl carbinol	1.3 ^d	_	40	_
Methyl isopropenyl ketone	1.8 ^e	9.0 °	_	_
Methyl lactate	2.2 ª	-	_	_
α-Methyl naphthalene	0.8 ^d	-	_	530
2,Methyl pentane	1.2 ^d	-	_	_
Methyl propionate	2.4	13	_	_
Methyl propyl ketone	1.6	8.2	_	-
Methyl styrene	1.0 ^d	-	49	495
Methyl vinyl ether	2.6	39	_	_
Methylene chloride	-	-	_	615
Monoisopropyl bicyclohexyl	0.52	4.1 r	124	230
2-Monoisopropyl biphenyl	0.53 j	3.2 r	141	435
Monomethylhydrazine	4	-	_	_
Naphthalene	0.88 s	5.9 ^t	_	526
Nicotine	0.75 a	-	_	_
Nitroethane	3.4	-	30	-
Nitromethane	7.3	-	33	_
1-Nitropropane	2.2	_	34	-
2-Nitropropane	2.5	_	27	-
<i>n</i> -Nonane	0.85 ^u	_	31	205
<i>n</i> -Octane	0.95	_	13	220
Paraldehyde	1.3	_	_	_
Pentaborane	0.42	_	-	-
<i>n</i> -Pentane	1.4	7.8	-48	260
Pentamethylene glycol	_	_	—	335
Phthalic anhydride	1.2 ^g	9.2 v	140	570
3-Picoline	1.4 ^d	_	—	500
Pinane	0.74 ^w	7.2 w	-	-
Propadiene	2.16	_	—	-
Propane	2.1	9.5	-102	450
1,2-Propandiol	2.5 ^d	_	—	410
b-Propiolactone	2.9 °	_	—	-
Propionaldehyde	2.9	17	_	_
<i>n</i> -Propyl acetate	1.8	8	_	-
<i>n</i> -Propyl alcohol	2.2 ^k	14 ª	_	440
Propyl amine	2.0		_	_
Propyl chloride	2.4 ^d	_	_	_

Combustible	LFL y	UFL y	$T_{\rm L}$ (°C)	AIT (°C)
<i>n</i> -Propyl nitrate	1.8 q	100 q	21	175
Propylene	2.4	11	_	460
Propylene dichloride	3.1 ^d	_	_	_
Propylene glycol	2.6 x	_	_	_
Propylene oxide	2.8	37	_	-
Pyridine	1.8 ^k	12 у	_	_
Propargyl alcohol	2.4 ^e	—	_	_
Quinoline	1.0 ^d	_	_	_
Styrene	1.1 ^z	_	_	-
Sulfur	2.0 ^{aa}	_	247	_
<i>p</i> -Terphenyl	0.96 ^d	_	_	535
<i>n</i> -Tetradecane	0.5 d	—	_	200
Tetrahydrofurane	2.0	_	-	-
Tetralin	0.84 ^a	5.0 ^h	71	385
2,2,3,3-Tetramethyl pentane	0.8	_	_	430
Tetramethylene glycol	_	_	_	390
Toluene	1.2 ^a	7.1 ^a	-	480
Trichloroethane	_	_	_	500
Trichloroethylene	12 ^{bb}	40 ^y	30	420
Triethyl amine	1.2	8.0	_	_
Triethylene glycol	0.9 g	9.2 ^{bb}	_	_
2,2,3-Trimethyl butane	1.0	_	_	420
Trimethyl amine	2.0	12	_	_
2,2,4-Trimethyl pentane	0.95	—	_	415
Trimethylene glycol	1.7 ^d	—	_	400
Trioxane	3.2 ^d	_	_	_
Turpentine	0.7 ^a	_	_	_
Unsymmetrical dimethylhydrazine	2.0	95	_	-
Vinyl acetate	2.6	—	_	_
Vinyl chloride	3.6	33	_	_
<i>m</i> -Xylene	1.1 ^a	6.4 ^a	_	530
o-Xylene	1.1 ^a	6.4 ^a	_	465
<i>p</i> -Xylene	1.1 ^a	6.6 ^a	_	530
a $T = 100^{\circ}$ C b $T = 75^{\circ}$ C c $T = 75^{\circ}$ C h $T = 150^{\circ}$ C i $T = 110^{\circ}$ C j $T = 175^{\circ}$ C o $T = 72^{\circ}$ C p $T = 117^{\circ}$ C q $T = 125^{\circ}$ C v $T = 195^{\circ}$ C w $T = 160^{\circ}$ C x $T = 96^{\circ}$ C	$ \begin{array}{c} C & d \text{ Calculated} \\ \hline G^{\circ}C & k T = 60^{\circ}C \\ \hline G^{\circ}C & r T = 200^{\circ}C \\ \hline C & y T = 70^{\circ}C \end{array} $	° $T = 50$ °C ¹ $T = 53$ °C ⁸ $T = 78$ °C ² $T = 29$ °C	^f $T = 85^{\circ}$ C ^m $T = 86^{\circ}$ C ^t $T = 122^{\circ}$ C ^{aa} $T = 247^{\circ}$ C	$g T = 140^{\circ}C$ $n T = 130^{\circ}C$ $u T = 43^{\circ}C$ $bb T = 30^{\circ}C$

11.11 Limiting Oxygen Concentrations

Gas or Vapor	Limiting Oxidant Concentration N_2 /Air (volume % O ₂ above which deflagration can take place)	Limiting Oxidant Concentration CO ₂ /Air (volume % O ₂ above which deflagration can take place)
Ethane	11	13.5
Propane	11.5	14.5
<i>n</i> -Butane	12	14.5
Isobutane	12	15
<i>n</i> -Pentane	12	14.5
Isopentane	12	14.5
<i>n</i> -Hexane	12	14.5
<i>n</i> -Heptane	11.5	14.5
Ethylene	10	11.5
Propylene	11.5	14
1-Butene	11.5	14
Isobutylene	12	15
Butadiene	10.5	13
3-Methyl-1-butene	11.5	14
Benzene	11.4	14
Gasoline:		
(73/100)	12	15
(100/130)	12	15
(115/145)	12	14.5
Kerosene	10 (150°C)	13 (150°C)
JP-1 fuel	10.5 (150°C)	14 (150°C)
JP-3 fuel	12	14.5
JP-4 fuel	11.5	14.5
Natural Gas		
(Pittsburgh)	12	14.5
n Dutul oblorido	14	_
<i>n</i> -Butyl chiolide	12 (100°C)	_
Mathulana ahlarida	19 (30°C)	_
	17 (100°C)	_
Ethylene dichloride	13	_
	11.5 (100°C)	_
1,1,1-Trichloro- ethane	14	_
Trichloroethylene	9 (100°C)	
Acetone	11.5	14
<i>n</i> -Butanol		16.5 (150°C)
Carbon disulfide	5	7.5
Carbon monoxide	5.5	5.5

Limiting Oxygen Concentrations at Normal Temperature and Pressure

Gas or Vapor	Limiting Oxidant Concentration N ₂ /Air (volume % O ₂ above which deflagration can take place)	Limiting Oxidant Concentration CO ₂ /Air (volume % O ₂ above which deflagration can take place)
Ethanol	10.5	13
2-Ethyl butanol	9.5 (150°C)	_
Ethyl ether	10.5	13
Hydrogen	5	5.2
Hydrogen sulfide	7.5	11.5
Isobutyl formate	12.5	15
Methanol	10	12
Methyl acetate	11	13.5
Methyl ether	10.5	13
Methyl formate	10	12.5
Methyl ethyl ketone	11	13.5

11.12 Pool Burning: Thermochemical and Empirical Constants for a Number of Common Organic Fuels

Material	Density (kg•m ⁻³)	$\frac{\Delta h_{\rm g}}{(\rm kJ\bullet kg^{-1})}$	$\frac{\Delta h_{\rm c}}{(\rm MJ \bullet kg^{-1})}$	$\dot{m}_{\infty}^{''}$ (kg•m ⁻² •s ⁻¹)	<i>k</i> β (m ⁻¹)
Cryogenics		•			
Liquid H ₂	70	442	120.0	0.017 (±0.001)	6.1 (±0.4)
LNG (most CH ₄)	415	619	50.0	0.078 (±0.018)	1.1 (±0.8)
LPG (mostly C ₃ H ₈)	585	426	46.0	$0.099 (\pm 0.009)$	1.4 (±0.5)
Alcohols					
Methanol (CH ₃ OH)	796	1,195	20.0	*	*
Ethanol (C ₂ H ₅ OH)	794	891	26.8	*	*
Simple Organic Fuels					
Butane (C_4H_{10})	573	362	45.7	0.078 (±0.003)	2.7 (±0.3)
Benzene (C ₆ H ₆)	874	484	40.1	0.085 (±0.002)	2.7 (±0.3)
Hexane (C_6H_{14})	650	433	44.7	0.074 (±0.005)	1.9 (±0.4)
Heptane (C_7H_{16})	675	448	44.6	0.101 (±0.009)	1.1 (±0.3)
Xylenes (C ₈ H ₁₀)	870	543	40.8	0.090 (±0.007)	1.4 (±0.3)
Acetone (C_3H_6O)	791	668	25.8	0.041 (±0.003)	1.9 (±0.3)
Dioxane $(C_4H_8O_2)$	1,035	552	26.2	0.018	5.4
Diethyl ether $(C_4H_{10}O)$	714	382	34.2	0.085 (±0.018)	0.7 (±0.3)
Petroleum Products					
Benzine	740	—	44.7	0.048 (±0.002)	3.6 (±0.4)
Gasoline	740	330	43.7	0.055 (±0.002)	2.1 (±0.3)
Kerosene	820	670	43.2	0.039 (±0.003)	3.5 (±0.8)
JP-4	760	-	43.5	0.051 (±0.002)	3.6 (±0.1)
JP-5	810	700	43.0	0.054 (±0.002)	1.6 (±0.3)
Transformer oil, hydrocarbon	760		46.4	0.039	0.7
Fuel oil, heavy	940-1,000	_	39.7	0.035 (±0.003)	1.7 (±0.6)

Material	Density (kg•m ⁻³)	$\frac{\Delta h_{\rm g}}{(\rm kJ\bullet kg^{-1})}$	$\frac{\Delta h_{\rm c}}{(\rm MJ \cdot kg^{-1})}$	$\dot{m}_{\infty}^{''}$ (kg•m ⁻² •s ⁻¹)	<i>k</i> β (m ⁻¹)
Crude oil	830-880	—	42.5-42.7	0.060	0.62
Solids					
Polymethylmethacrylate	1,184	1,611	24.9	0.020 (±0.002)	3.3 (±0.8)
Polyoxymethylene (CH ₂ O) _n	1,425	2,430	15.7		
Polypropylene $(C_3H_6)_n$	905	2,030	43.2		
Polystyrene $(C_8H_8)_n$	1,050	1,720	39.7		

11.13 Effective Opposed-Flow Flame Spread Properties

Material	T _{ig} (°C)	$\frac{k\rho c}{(kW^2 \cdot s/m^4 \cdot K^2)}$	Ф (kW ² /m ³)	T _{s,min} (°C)	Φ/kρc (mK²/s)
PMMA polycast (1.59 mm)	278	0.73	5.4	120	8
Polyurethane (S353M)	280	_	_	105	82
Hardboard (6.35 mm)	298	1.87	4.5	170	2
Carpet (acrylic)	300	0.42	9.9	165	24
Fiberboard, low density (S119M)	330	-	_	90	42
Fiber insulation board	355	0.46	2.2	210	5
Hardboard (3.175 mm)	365	0.88	10.9	40	12
Hardboard (S159M)	372	-	_	80	18
PMMA type g (1.27 cm)	378	1.02	14.4	90	14
Asphalt shingle	378	0.70	5.3	140	8
Douglas fir particle board (1.27 cm)	382	0.94	12.7	210	14
Wood panel (S178M)	385	-	_	155	43
Plywood, plain (1.27 cm)	390	0.54	12.9	120	24
Chipboard (S118M)	390	_	_	180	11
Plywood, plain (0.635 cm)	390	0.46	7.4	170	16
Foam, flexible (2.54 cm)	390	0.32	11.7	120	37
GRP (2.24 mm)	390	0.32	9.9	80	31
Mineral wool, textile paper (S160M)	400	_	_	105	34
Hardboard (gloss paint) (3.4 mm)	400	1.22	3.5	320	3
Hardboard (nitrocellulose paint)	400	0.79	9.8	180	12
GRP (1.14 mm)	400	0.72	4.2	365	6
Particle board (1.27 cm stock)	412	0.93	4.2	275	5
Gypsum board, wallpaper (S142M)	412	0.57	0.79	240	1
Carpet (nylon/wool blend)	412	0.68	11.1	265	16
Carpet #2 (wool, untreated)	435	0.25	7.3	335	30
Foam, rigid (2.54 cm)	435	0.03	4.0	215	141
Polyisocyanurate (5.08 cm)	445	0.02	4.9	275	201
Fiberglass shingle	445	0.50	9.0	415	18
Carpet #2 (wool, treated)	455	0.24	0.8	365	4
Carpet #1 (wool, stock)	465	0.11	1.8	450	17

Material	T _{ig} (°C)	<i>kρc</i> (kW ² •s/m ⁴ •K ²)	Ф (kW ² /m ³)	T _{s,min} (°C)	Φ/ <i>k</i> ρ <i>c</i> (mK²/s)
Aircraft panel epoxy Fiberite	505	0.24	*	505	*
Gypsum board, FR (1.27 cm)	510	0.40	9.2	300	23
Polycarbonate (1.52 mm)	528	1.16	14.7	455	13
Gypsum board (common) (1.27 mm)	565	0.45	14.4	425	32
Plywood, FR (1.27 cm)	620	0.76	*	620	*
Polystyrene (5.08 cm)	630	0.38	*	630	*

Note: Values are only significant to two places.

* Flame spread was not measurable.

Source: SFPE Handbook of Fire Protection Engineering, fifth edition, with permission from SFPE.